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Abstract of the Thesis 
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in Peconic Bay (Long Island, NY) 

 
by 
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in 

School of Marine and Atmospheric Sciences 

Marine Sciences 

Stony Brook University 

2020 

 

As global ocean temperatures continue to rise, concern has arisen over the economic and 
environmental ramifications.  As an integral part of coastal ecosystems, seagrasses provide 
nurseries for shellfish and juvenile fish, reduce currents, and improve water quality.  Since the 
1930’s, Zostera marina (a northern seagrass species) has declined in Peconic Bay, Long Island 
(NY, USA).  Sensitive to both light and temperature, light attenuation below photosynthetic 
demands and/or elevated temperatures over 25°C causes a metabolic imbalance in Z. marina.  
Severe or extended imbalances exhaust carbon reserves, inducing mortality.  Temperature and 
sediment characteristics typically influence minimum light requirements (between 10 and 30% 
of surface light attenuation) of Z. marina.  To determine minimum light requirements for Peconic 
Bay Z. marina populations, the light attenuation coefficient (Kd) was modeled using multiple 
linear regression.  Collected concentrations of total suspended solids (TSS), chlorophyll-a, and 
colored dissolved organic matter (CDOM) were used with collected Kd.  The light model 
explained only 25% of the Kd variance and further analysis suggested influence of other factors.  
A habitat suitability model developed from light, depth, temperature, hardened shorelines, and 
wave exposure, effectively modeled Z. marina presence in Peconic Bay–with 99.4% accuracy.  
This random forest model ranked variable importance as follows: wave exposure (highest), 
hardened shorelines, temperature, depth, and light (lowest).  Model accuracy increased with 
removal of the light variable.  Additionally, this model calculated survival thresholds, areas of 
high restoration probability, and predicted impacts of climate change—specifically temperature 
increases and sea level rise—in Peconic Bay.     
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INTRODUCTION 
 
 Seagrasses are an integral part of coastal estuarine systems that provide a multitude of 

ecosystem services including nurseries for shellfish and finfish, sediment stability, current/wave 

reduction, and increased water quality (Dennison et al. 1993, Hughes et al. 2013).  Seagrasses 

integrate carbon from the water column into tissues during photosynthesis.  Anaerobic sediments 

cover the resulting detritus and create a sink of carbon, known as “blue carbon” (Fourqurean et al. 

2012, Greiner et al. 2013, Lavery et al. 2013). Globally, seagrass coverage has declined 

dramatically due to wasting disease, light limitation, human activity, and temperature stress (Orth 

et al. 2006, Hughes et al. 2013). Without sufficient light, seagrass respiration rates outpace 

photosynthesis, resulting in net negative production (Dennison & Alberte 1985). Higher water 

temperatures require higher light levels to compensate for higher metabolic demand.  Although 

higher temperatures and lower light levels are detrimental to the survival and productivity of 

seagrasses, improvements in either environmental variable helps to alleviate the stress associated 

with the other (Zimmerman et al. 2015). 

Zostera marina, or eelgrass, is the dominant seagrass found in the eastern bays of Long 

Island, NY, USA (NYS Seagrass Taskforce 2009).  New York has experienced a 90% decrease in 

Z. marina cover (as of 2009).  During the 1930s, seagrass losses were driven by a wasting disease 

caused by the protist, Labyrinthula macrocystis (Short et al. 1987).  More recent declines have 

been caused by light limitation and, to a lesser degree, fishing/shellfishing practices.  Excess 

nitrogen causes algal blooms and excess epiphytic growth, which block light from seagrass in high 

densities (NYS Seagrass Taskforce 2009). Zostera marina requires a minimum of ~10–30% 

surface light attenuating to depth; this range is dependent on environmental conditions such as 

temperature and percent organic matter (Dennison et al. 1993, Dixon & Leverone 1995, Batiuk et 

al. 2000, Kemp et al. 2004, Kenworthy et al. 2014). Increasing water temperature raises the 

metabolic rates of Z. marina, exacerbating physiological stress on the plant.  The optimal 

temperature range for Z. marina is between 10–25°C, and signs of stress are observed above 25°C 

(Zimmerman et al. 1989).  Prolonged exposure (30+ days) over 25°C is lethal as well as short 

exposure from 27–35°C (Zimmerman et al. 1989).  Zostera marina typically grows in sediment 

with less than 5–13% organic matter (Kenworthy et al. 2014). High organic matter sediments are 

generally associated with anoxia and high levels of hydrogen sulfide, a lethal by-product of 

anaerobic microbial respiration. Elevated hydrogen sulfide levels (>4µM) increases the need for 
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radial oxygen loss from roots and rhizomes, which can increase the photosynthetic demand.  If not 

met, hydrogen sulfide penetration into the roots at high concentrations kills the plant (Krause-

Jensen et al. 2011, Kenworthy et al. 2014). These factors act individually and synergistically to 

control Z. marina light requirements and survival. 

Peconic Bay, an estuary comprised of several small bays, lies between the North and South 

“Forks” of eastern Long Island, NY (Figure 1).  Plagued by wasting disease in the 1930s and brown 

tide (Aureococcus anophagefferens) beginning in 1985, there was a significant die-off of Z. marina 

in Peconic Bay.  Populations of the bay scallop (Argopecten irradians), an economically important 

fishery to New York State, were also decimated by the brown tide events (Dennison et al. 1989, 

Tettelbach et al. 2015) .  Brown tide, in high densities, will block light from reaching submerged 

aquatic vegetation, especially at the deep edges of Z. marina beds (Dennison et al. 1989).  

Shallower populations might meet photosynthetic needs, but these areas often fall outside optimal 

ranges of other key environmental conditions, such as temperature and wave energy.  Brown tide 

is estimated to have reduced Z. marina coverage by 40% in Great South Bay and the Peconic 

Estuary during the 1980s (Dennison et al. 1989, Gobler & Sunda 2012). The continued loss of this 

important juvenile bay scallop habitat may prevent scallop recovery to pre-bloom densities; 

however, Carroll et. al (2010) found the invasive seaweed Codium fragile to provide a potentially 

suitable habitat.  A brown tide event in Peconic Bay has not occurred since 1995, yet Z. marina 

coverage has declined by approximately 50% from 2000 to 2014 (Tettelbach et al. 2015, Pickerell 

& Schott 2017).   

Water quality declines from east (Gardiner’s Bay) to west (Flanders Bay), as the estuary 

gets shallower, more stratified, and less hydrologically connected.  The Peconic River, the main 

tributary to the estuary, drains into Flanders Bay but is not the main source of freshwater.  The 

majority of freshwater input in Peconic Bay is through submarine groundwater discharge (Hardy 

1976).  Residential, commercial, and agricultural land surrounds the embayment which contributes 

substantially to nutrient loading in the area (Pickerell & Schott 2017).  The historical influence of 

nitrogen and phosphorus discharge due to sewage treatment plants in Riverhead has since lessened 

over time, but the impact of leaky septic systems and cesspools has increased.  These leaks 

contribute a majority (50%) of total nitrogen loading to the Peconic Bay Estuary (Hardy 1976, 

Lloyd 2014). Fertilizers and agriculture, particularly on the North Fork, contribute an additional 

26% of total nitrogen loading in the estuary.  Nutrients may run off directly into the estuary or 
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leach into the groundwater where they remain for 100s of years.  Atmospheric deposition 

contributes the remaining 24% of total nitrogen  (Lloyd 2014). Nitrogen typically acts as the 

limiting nutrient for phytoplankton growth (Thayer 1974, Boynton et al. 1982).  Nitrogen levels in 

Peconic Bay from 1998–2014 were below Peconic Estuary Program established criteria (0.45mg/L 

TN) for a majority of the year (Schaefer 2017).   

Despite low nitrogen levels, Z. marina beds have continued to decline in Peconic Bay.  

Extended temperatures (~30 days) above 25°C and lower light availability west of Shelter Island 

resulted in unsuccessful Z. marina restoration attempts by CCE (Cornell Cooperative Extension; 

Pickerell & Schott 2017).  Meadows west of Shelter Island (Bullhead Bay) are only found in areas 

of significant submarine groundwater discharge.  Pickerell and Schott (2017) hypothesized that 

groundwater keeps the roots and rhizomes cooler than the surrounding water, which results in 

reduced respiration demands and thus lower light requirements.  Determining the spatial resolution 

of groundwater discharge in Peconic Bay has been identified as a research priority for this estuary.  

This study excluded areas knowingly influenced by groundwater.   

Studying the effects of light and temperature limitations on Z. marina in Peconic Bay is 

essential.  Understanding how eutrophication, disease, and climate change affect seagrass locally 

improves the efficacy of restoration work.  Water quality improvements in bays along the Atlantic 

coast of the United States have led to successful restoration of seagrass in many urbanized estuaries 

(Greening et al. 2014, Reynolds et al. 2016).  The NYS Seagrass Taskforce, established in 2009 to 

study the mechanisms behind the Z. marina decline in Long Island waters,  recommended the 

creation of a bio-optical model for Peconic Bay.  Creating a bio-optical model to determine light-

limiting factors in Peconic Bay is necessary to understand the continued declines in Z. marina and 

how improvements in water quality will aid restoration.   

A bio-optical model allows for the addition of multiple light absorption, scattering, and 

refraction parameters to model light attenuation with depth.  Bio-optical models determine water 

column irradiance by representing the effect of biological material on optical properties (Baker & 

Smith 1981).  These models typically compute euphotic zone depths in the open ocean and 

similarly determine light limiting depths for seagrass restoration in coastal areas (Gallegos & 

Kenworthy 1996, Gallegos 2001, Koch 2001, Biber et al. 2008, Zimmerman et al. 2015).  Bio-

optical modeling conducted in the Chesapeake Bay focused primarily on Z. marina light 

requirements.  Extensive water quality monitoring to determine light requirements of resident Z. 
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marina populations resulted in increased management towards protecting and restoring this 

seagrass in the bay (Batiuk et al. 2000, Lefcheck et al. 2018).  The availability of previous bio-

optical models for Z. marina introduces the parameters and methods for future models and 

systems.  These models are variations on one another, but rely on the same underlying elements: 

chlorophyll-a (chl-a), total suspended solids (TSS), colored dissolved organic matter (CDOM), 

and the light attenuation coefficient (Kd) (Dennison et al. 1993, Stevenson et al. 1993, Kemp et al. 

2004, Biber et al. 2008, Zimmerman et al. 2015).  A bio-optical model, combined with temperature, 

sediment characteristics (porewater sulfide concentrations, organic content, and grain size), water 

column properties (salinity and dissolved oxygen), depth and tidal stage, wind speed, and wave 

exposure, can be used to produce a habitat suitability model.  The habitat suitability model uses 

spatially explicit information on key biotic and abiotic parameters to predict species occurrence in 

the landscape.  This knowledge will focus restoration efforts on high probability locations.   

Water quality sampling for chlorophyll, TSS, CDOM, and Kd took place over two summers 

at 15 locations throughout Peconic Bay.  Multiple linear regression was used to model Kd from 

collected chlorophyll, TSS, and CDOM.  Percent light to bottom for each day sampled determined 

the days of minimum percent light needed for Z. marina survival in Peconic Bay.  Sampling of 

CDOM had not been conducted in Peconic Bay prior to this study and a spectrophotometric and 

fluorometric relationship was determined.  This study hopes to demonstrate the importance of light 

to Z. marina populations and to encourage further water quality improvements in the estuary.  By 

determining light requirements, the combined effects of increased water quality and climate 

change (temperature and sea level rise) can be evaluated. 
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METHODS 

 

Study Area 

Located between the North and South Forks of Long Island, New York (Figure 1), the 

Peconic Bay estuary, comprised of five smaller bays, totals 218km2.  The only tributary to the bay, 

the Peconic River, discharges into westernmost Flanders Bay.  Most of the freshwater input 

discharges as groundwater through porous sediments.  Peconic Bay gradually deepens west to east 

from Flanders Bay (avg. depth: 1.6m) to Shelter Island Sound (avg. depth: 4.6m; Hardy 1976). 

Characterized by warmer temperatures and higher nutrients, western bays historically contained 

Z. marina, however, complete loss occurred prior to 1988 (Dennison et al. 1989).  Eastern Shelter 

Island Sound and Gardiner’s Bay contain the last two areas in Peconic Bay with Z. marina present.  

High-resolution orthoimagery, when available, was used to delineate Z. marina beds (Figure 2).  

Heavily tidally influenced, these areas receive cooler and clearer waters.  The average flushing 

time increases from 22 days in Shelter Island Sound to 55 days in Flanders Bay (Hardy 1976).  

 

 

Water Quality Monitoring 

This study focuses on water quality sampling from Flanders Bay to western Gardiner’s Bay 

(Figure 3).  Fifteen sites were chosen throughout Peconic Bay at depths less than 5m (MLW).  

Sites were classified into two categories: “historic”, or areas with historic but no present Z. marina; 

and “current”, or sites with Z. marina as of 2017.  No “current” sites lost notable Z. marina 

coverage during the sampling period.  Of these 15 sites, four sites within western Peconic Bay 

(Flanders, Great Peconic, and Little Peconic Bay) were selected to incorporate historic Z. marina 

coverage and subsequent losses prior to the 1980s.  The remaining 11 sites were distributed 

throughout eastern Peconic Bay (Shelter Island Sound and western Gardiner’s Bay) –– composed 

of six historic sites and five current sites.  Sites were labeled as: WQ 1–10 (without Z. marina) and 

SG 1–5, with Z. marina (Figure 3).  

The deep edge, considered to be the area of highest environmental stress for Z. marina, 

integrates the plant’s response to stresses from both light and sediment (Kenworthy et al. 2014, 

Zimmerman et al. 2015). However, while increased depths result in greater light stress, the deep 

edge experiences lower temperature stress in warmer months.  To monitor light requirements at 
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this “light stressed” area, sampling occurred at the deep edge of Z. marina beds where present 

(SG1-5).  Light requirements from the deep edge demonstrate the minimum light requirements of 

that Z. marina bed.  The constituents of the water column that were included in the bio-optical 

model were: chlorophyll-a (an indicator of shading by phytoplankton present in the water column), 

CDOM (colored dissolved organic matter), and TSS (total suspended solids).  Water quality 

parameters were recorded using YSI 6600 (2017) or EXO 1 sonde (2018) from a boat monthly in 

May, June and October, and bi-weekly from July through September.  At each station, water depth, 

dissolved oxygen (DO), water temperature, salinity, and turbidity (NTU’s), were measured <1m 

from the bottom.  The YSI instruments were calibrated monthly.   

Measurements of the irradiation values and percent light from surface were measured from 

at least three depths using a Li-Cor LI-1400 datalogger equipped with an underwater quantum 

sensor (LI-192SA) and deck sensor (LI-190SA).  In-situ light attenuation values, Kd (m-1), were 

determined by the Beer-Lambert exponential decay function (Carruthers et al. 2001).  Whole water 

grab samples were taken in duplicate below the water surface (~10 cm) using 1L amber 

polyethylene bottles at each station for TSS and chlorophyll-a. Chlorophyll-a was extracted using 

the USEPA fluorometric method 445.0 (Arar & Collins 1997), and concentration determined with 

a Turner Trilogy Laboratory Fluorometer. Chlorophyll-a filtration was performed within eight 

hours of collection and frozen at -20°C, extracted within three weeks, and analyzed within 48 hours 

of acetone addition.  Total suspended solids concentration was determined using USEPA method 

160.2 (USEPA 1999) and filtered within one week of collection. 

CDOM samples were taken monthly to minimize cost and processing time.  Samples were 

taken in duplicate at each station and filtered on site through a 0.7-µm pore size GF/F filter into 

amber borosilicate 20mL vials and frozen at -20°C until analysis.  CDOM absorption 

measurements were run on a Perkin Elmer dual beam UV-vis spectrophotometer using 10-cm 

quartz cuvettes from 350–700 nm and a slit length of 2 nm.  CDOM absorption coefficients were 

determined at 440 and 350 nm after correcting raw values for scattering and normalizing to a 

standard path length (Branco & Kremer 2005). CDOM fluorometric measurements (ppb) were run 

on a Turner Trilogy Laboratory Fluorometer using the UV module (excitation = 350 nm and 

emission wavelength= 410–450 nm) and calibrated using quinine sulfate at known concentrations 

(Rochelle-Newall et al. 2014). Both fluorometric and spectrophotometer measurements were made 

for CDOM to determine a correlation between the two methods: this was performed for 3 sampling 
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dates at all sites (n=45).  While absorption measurements are standard practice due to the 

heterogeneity of sample particle size, fluorometric measurements are much easier and less 

expensive to run.  Determining a method for converting between fluorometric and 

spectrophotometric measurements has been successful for smaller water bodies and is useful when 

including CDOM measurements in routine water quality sampling (Branco 2007). Bio-optical 

modeling typically uses CDOM absorption measurements at 440 nm.  However, when comparing 

absorption and fluorometric measurements, it is important to use the same excitation wavelength, 

in this case, 350 nm (Hoge et al. 1993, Rochelle-Newall et al. 2014). Relationships between a350, 

a440, and concentration (ppb) were evaluated using linear regression. 

 

 

Creation of bio-optical model 

 To model the light attenuation coefficient (Kd) from collected chlorophyll-a (µg/L), TSS 

(mg/L), and CDOM samples (a350), a multiple linear regression (MLR) technique was used based 

on the assumption that each constituent contributed individually to light attenuation (Batiuk et al. 

2000): 

								𝐾! = 𝐾"#$%& + 𝑘'[𝐶ℎ𝑙] + 𝑘([𝑇𝑆𝑆] + 𝑘)[𝐶𝐷𝑂𝑀]         (1) 

where Kwater represents the partial coefficient of light attenuation through pure seawater (intercept), 

and kc, ks, kg represents the specific light attenuation coefficient of chlorophyll, TSS, and CDOM 

respectively (Batiuk et al. 2000, Gallegos 2001). MLR was performed with and without CDOM 

measurements for Peconic Bay, at each site sampled, and grouped by spatial designation, “regions” 

(A–E, Figure 4).  Sites were grouped into “regions”, A–E based on proximity to one another.  

Grouping spatially allows for a lower chance of error by increasing data points.  Outliers were 

removed from data using the Bonferroni test (p <0.05) and Cook’s Distance.   
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Percent light to bottom 

 Percent light reaching the bottom, PLW (percent light through water), was calculated by 

using Gallegos (2001): 

𝑃𝐿𝑊 = 𝑒𝑥𝑝*!∗, ∗ 100            (2) 

where Kd is the observed light attenuation coefficient and Z is the depth (m) at mean low water 

(MLW).  Bathymetry was obtained from the NCEI NOAA LIDAR data taken in 2014 as part of 

the Hurricane Sandy DEM imagery.  Bathymetry taken from the 2014 imagery provided the 

highest horizontal and vertical resolution at 10cm each.  The vertical datum was transformed into 

MLW from NAVD88 by the NOAA vertical datum converter (VDatum 4.0.1).  Observed Kd 

values were interpolated over the bay from sampling sites using inverse distance weighting (IDW).  

These values, along with bathymetry (Z) were then used in Equation 2 to determine PLW 

throughout the bay for the 18 sampling days.  A binary classification scheme was used to determine 

the percent light threshold needed for Z. marina to survive in this system.  Seven threshold values 

were tested based on the literature value range of 10–30% required surface light: 10, 15, 18.5, 20, 

22.5, 25, and 30% light to bottom (Dennison et al. 1993, Dixon & Leverone 1995, Kemp et al. 

2004, Kenworthy et al. 2014). For every day of sampling each cell was classified by 0, below the 

threshold, or 1, above or equal to the threshold using the ‘reclassify’ function in R (Hijmans 2019).  

Seven layers were created for each threshold with a maximum value of 18 for each cell.  

Interquartile values, 25th, 50th, and 75th, of PLW values (0–100) for all days of sampling were also 

calculated.  A 50,000 random point file was constructed within a 0–5-m depth region (MLW), 

corresponding to the minimum and maximum depth where Z. marina was present in 2017 imagery 

delineations.  For the entire point file, 2.5% of points were within Z. marina beds due to the low 

coverage in Peconic Bay.  A stratified random design was used to avoid leading to a high Type-2 

error rate; 5,000 random points were taken within Z. marina sites and combined with a 45,000 

random point file outside of Z. marina sites.  Cell values from each threshold (PLW 10–30, 

interquartile values) were extracted to these points using the ‘extract’ function in R.  These points 

were then used in model evaluations for determining the importance and value of each threshold 

in predicting Z. marina presence or absence.   
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Statistical analysis and model assessment 

 Differences between years, sites, and groupings were assessed through ANOVA and 

subsequent Tukey HSD tests.  Significant results in all tests were evaluated using a p-value of less 

than or equal to 0.05.  Outliers for all regressions were evaluated using the Bonferroni test and 

Cook’s Distance.   

Linear regression was performed to determine possible correlation between Kd and each 

parameter: chlorophyll, TSS, and CDOM.  These parameters were also evaluated against one 

another to ensure independence.  When parameters were correlated, the variance inflation factor 

(VIF) was computed to determine collinearity using the ‘car’ R package (Fox et al. 2020).  Scores 

higher than 5 (conservative)–10 are considered to have a problematic amount of collinearity and 

should be removed (James et al. 2013). MLR was used to model Kd with the possible additive 

effects of chlorophyll, TSS, and CDOM.  This was also performed without CDOM as many water 

quality management agencies do not sample for this parameter.  MLR was used with individual 

sites, regions, and the entire bay to determine the relationship between Kd and multiple parameters. 

Evaluating light thresholds for Peconic Bay Z. marina was performed using the evaluate 

function in R package ‘dismo’ (Hijmans et al. 2017).  Light levels at each threshold (PLW 10–30) 

and 25th, 50th, and 75th interquartile values were extracted to 50,000 points and each point was 

determined to be present or absent for Z. marina.  Boxplots of days at each threshold were created 

to display median and range of values (0–18) at points where Z. marina is present.  The evaluate 

function then calculated the value at which the true positive and negative rate were concurrently 

at their maximum (Hijmans et al. 2017).  Each cell was classified as present or absent based on the 

value computed by the function.  The best light value for prediction of Z. marina presence or 

absence was determined by comparing overall accuracy, correlation, true positive/negative rates, 

and false positives/negative rates.  
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RESULTS 

 

Site characteristics 

Significant differences between individual sites and regions were evaluated through 

ANOVA and Tukey HSD tests.  Data for 2017 and 2018 were pooled for all linear regressions.  

Chlorophyll values were between 1.19 and 39.74 (µg/L), had a median of 6.12 (µg/L), and differed 

only slightly among sites (Table 1).  One of the two most western sites, WQ2, had significantly 

higher chlorophyll values than several of the eastern sites (Figure 5).  Values for TSS ranged from 

3.7 to 50.6 (mg/L), had a median value of 12.4 (mg/L), and had no significant differences between 

individual sites (Figure 6).  CDOM values ranged between 0.27 and 2.86 (m-1), had a median value 

of 1.31 (m-1), and had no significant differences between sites (Figure 7).  Kd was also variable, 

ranging from 0.25 to 1.69 (m-1), had a median of 0.68 (m-1), and had significant differences for 

two sites (Figure 8).  The proximity of one site to the mouth of Hashomomuck Pond, WQ4, and 

the other to a Shelter Island town wastewater outfall, SG1, likely accounts for differences in Kd.  

These two sites were not significantly different from each other.  

There were few statistical differences between sites within regions.  Minimum, maximum, 

and median values for chlorophyll, TSS, CDOM, and Kd were also computed for the regions (Table 

2).  Significant differences between regions were found for chlorophyll (Figure 9) and Kd (Figure 

12).  Region A, the most western region, had statistically higher chlorophyll values when compared 

to regions C, D, and E, the more eastern regions.  Region B, located in Shelter Island Sound to 

eastern Little Peconic Bay, had significantly higher Kd values when compared with all other 

regions.  No significant differences were found for TSS (Figure 10) and CDOM (Figure 11).  

 

 

Linear Regression Modeling 

Linear regression was performed with chlorophyll-a (µg/L) and TSS (mg/L) 

concentrations, and CDOM absorption (a350) to determine correlation with Kd.  Individual sites, 

regions, and the bay were separately analyzed to determine if any parameter was a sufficient 

predictor of Kd. Individual parameters against Kd yielded largely insignificant results. Chlorophyll-

a was the best predictor for Kd at two out of fifteen sites (Table 3), TSS at one site (Table 4), and 

CDOM at three sites (Table 5).  However, the slope of the line at one of the two chlorophyll and 
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all CDOM significant sites was negative, rendering these results of little value to the model.  

Grouping spatially uses more data points and although the coefficient of determination was 

reduced, the significance of the models was increased and the chance of Type II error decreased.  

Among these models, one of the five chlorophyll-a models (Table 6), two TSS models (Table 7), 

and one CDOM model (Table 8) were significant.  When correlation was modeled for the entire 

bay between the light attenuation coefficient and each parameter, TSS was significant, but 

chlorophyll and CDOM were not (Table 9).  The best predictor of the light attenuation coefficient 

was total suspended solids: however, the coefficient of determination (R2= 0.06) was not high 

enough to be appropriate for modeling, simply indicating a weak relationship between the 

parameters. 

Multiple linear regression was used to model the contributions of chlorophyll, TSS, and 

CDOM to the light attenuation coefficient.  MLR was performed similarly to the previous linear 

modeling (i.e. individual sites, spatial groups, and the entire bay).  Five of the fifteen sites had 

significant correlation: however, four of the five significant regressions also included negative 

coefficients for at least one parameter (Table 10).  All spatially grouped models were significantly 

correlated with relatively high coefficients of determination (R2=0.3–0.7).  Chlorophyll and/or 

CDOM were negative in three of the five models, suggesting that one, or both, of the variables 

were not important to the light attenuation coefficient in that area (Table 11).  The model for the 

entire bay was significant: all parameter coefficients were positive in the model, but chlorophyll 

and CDOM coefficients were not statistically significant., indicating they were not as important as 

TSS to light attenuation in this estuary (Table 11).  Multicollinearity was found between all 

parameters; however, the variables were not found to inflate the variance of the regression 

coefficient due to low VIF scores (< 1.25).  

The CDOM parameter was removed from the modeling, as many agencies do not test for 

this constituent, and re-run with the same methods.  Five of the fifteen sites were significantly 

correlated between Kd and chlorophyll/TSS.  All models included negative parameter coefficients, 

but four of the five were positive for TSS parameter coefficients (Table 12).  When spatially 

grouped, three of the five models showed significant correlation and two of those included negative 

parameter coefficients for chlorophyll (Table 13).  The full bay model was highly significant, and 

all values were positive, though the chlorophyll coefficient was not significant (Table 13). 
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Threshold analysis of light levels in Peconic Bay 

 Interpolated percent light through water (PLW) was determined throughout Peconic Bay 

for each day sampled using Equation 2.  Days over threshold values of PLW were calculated at 

10% (Figure 13, 14), 15% (Figure 15, 16), 18.5% (Figure 17, 18), 20% (Figure 19, 20), 22.5% 

(Figure 21, 22), 25% (Figure 23, 24), and 30% (Figure 25, 26) of incident light. Zostera marina 

appeared to require a percent light of over 10% for all days sampled but varied between a minimum 

18 and 6 days at 30%, excluding outliers (Figure 27).  All PLW thresholds had a median value of 

18 days, excluding the PLW of 30%, which had a median value of 17 days.  The inter-quartile 

ranges for PLW thresholds increased as percent light increased, suggesting that populations had 

varying light requirements.  Points with present Z. marina also received higher PLW than those 

without (Figure 28).   Correlation of Z. marina presence to light threshold values remained low 

(0.26–0.35) but was highest at the PLW of 22.5% (Table 16).  Z. marina presence or absence based 

on the threshold PLW of 22.5% of 11 days yielded a high false positive rate, 0.38 (38%).  Out of 

50,000 points, about 20,000 points were misclassified as having Z. marina where none was present.  

In addition, 25, 50, and 75th interquartile values of percent light through water (0–100 %) from all 

days sampled (18 days) were used as a different metric to determine typical light levels needed for 

Z. marina to survive (Figure 20).  These light levels were also run through the evaluate function 

and performed similarly to the days over PLW thresholds (correlation 0.29–0.31).  The cut-off 

threshold was between 21.61 and 26.30% (25–75th IQR), which encompasses the days over PLW 

of 22.5% (Table 16).  The high false positive rate suggests that there were other parameters outside 

of light affecting Z. marina distribution in Peconic Bay.     

 

 

CDOM  

In Peconic Bay there was a significant positive relationship (R2=0.37) between CDOM 

absorption (a440) and concentration (ppb; Figure 29).  There was also a significant relationship 

between a440 and a350 (R2=0.72; Figure 30).  The relationship between a350 and concentration 

measurements (ppb) was much stronger than using a440 (Figure 23).  Equation 3 relating 

concentration (ppb) to a350 was as follows: 

  𝑎-./ = 1.03803 ∗ =𝐶𝐷𝑂𝑀001> + 0.97509               (3) 
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This equation can be used to estimate CDOM in Peconic Bay (R2=0.69, Figure 23).  The 

relationship between fluorescence and absorbance is important because CDOM had not been 

systematically monitored in Peconic Bay prior to this study.   

 

 

 

 

 

 

DISCUSSION  

 Declines in Z. marina may be caused by the plant’s inability to compensate for metabolic 

demands due to insufficient light.  Determining a model for light attenuation is imperative for the 

management of Z. marina to predict effects of proposed changes to water quality management.  

When depth is known, percent light to bottom can be calculated with Kd from collected water 

quality samples; when percent light to bottom is known, Z. marina populations can be monitored 

for insufficient light. The model also has the capability to predict percent light to bottom from 

modified water constituent concentrations, e.g. via nitrogen management or lack thereof (Gallegos 

& Kenworthy 1996, Gallegos 2001, Kemp et al. 2004, Biber et al. 2008).  The predictions of the 

bio-optical model will be useful with future climate change scenarios of increasing water 

temperatures and sea level rise.  Higher water temperatures and the corresponding increase in 

seagrass respiration will increase the photosynthetic requirement, especially when light is limiting 

(Biber et al. 2005, Kenworthy et al. 2014, Abdelrhman 2016, 2017). Conversely, higher water 

clarity may protect Z. marina in surviving in future warmer temperatures (Zimmerman et al. 2015).   

Zostera marina has been continuously losing area from western to eastern Peconic Bay, 

even as water quality thresholds have been met (Pickerell & Schott 2017, Schaefer 2017).  

Unexpectedly, differences in CDOM or TSS were not detected between sites and regions, 

especially on a west to east gradient.  Limited differences between sites and regions were present 

in chlorophyll concentrations and the light attenuation coefficient.  The site differences that were 

present for chlorophyll existed between western sites (WQ 1 and 2) and eastern sites due to longer 

residence times (Hardy 1976).  The light attenuation coefficient and TSS concentrations were not 

significantly different between these areas.  Concentrations of model constituents were within 
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bounds of several other water quality sampling programs focused on Z. marina light requirements 

(Kemp et al. 2004, Biber et al. 2008, Kenworthy et al. 2014, Zimmerman et al. 2015, Abdelrhman 

2017).  However, sampling typically took place on days where the sea-state was calm (wind speed 

< 17 knots) from May-October, which may affect the light attenuation value and concentrations of 

the constituents.  Total suspended solids would likely be higher with wind events, and CDOM and 

chlorophyll would likely increase following heavy rain. Both events could increase light 

attenuation (Ward et al. 1984, Jordan et al. 1991, Stevenson et al. 1993, Koch 1999, Dixon et al. 

2014).  

Linear regression between the light attenuation coefficient and individual parameters 

yielded low correlation on site, region, and bay levels.  The best predictor in the system was TSS, 

explaining only 6% of the variance in light attenuation.  The low correlation values suggested that 

no one parameter accurately explains light attenuation.  Modeling regions with all parameters for 

light attenuation and only considering the coefficient of determination yielded the best results.  

However, this method generated negative coefficients for chlorophyll and TSS, undermining the 

assumption that all constituents were additive.  Similar coefficients between clustered sites were 

expected but not produced (Batiuk et al. 2000). In modeling the entire bay, the coefficient of 

determination doubled when CDOM was included in the model (R2=0.25) versus not (R2=0.12).  

These models did not produce a high enough coefficient of determination to effectively predict the 

light attenuation coefficient despite being statistically significant.  To create an accurate model, a 

follow up study that uses an in-situ spectrophotometer is needed.  This higher resolution study 

would determine the following: total absorption and backscattering coefficients; partial absorption 

and backscattering coefficients of water, phytoplankton, non-algal particulates; and the partial 

absorption coefficient of CDOM.  Obtaining these coefficients would allow for higher accuracy 

predictions of the light attenuation coefficient, which will model various future scenarios of 

constituent values (Gallegos & Kenworthy 1996, Gallegos 2001, Kemp et al. 2004, Biber et al. 

2008). Sampling over the entire year and in more areas would also be beneficial in understanding 

the light relationship to chlorophyll, TSS, and CDOM in this system.  

CDOM was deemed an important water constituent in determining the light attenuation 

coefficient in Peconic Bay, doubling the coefficient of determination in the multiple linear 

regression of the entire bay.  Although CDOM did not attenuate light as highly as other model 

constituents during this sampling period, it is still useful to include in light modeling and important 
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to attenuation in higher concentrations (Branco & Kremer 2005, Biber et al. 2008). For instance, 

CDOM was found to be the dominant absorber of light in Quantuck Bay (Shinnecock Bay, Long 

Island, NY) during a brown tide event in 2004 (Etheridge & Roesler 2004).  While a brown tide 

event has not occurred in Peconic Bay since 1995, this does not exclude the possibility of a future 

occurrence, especially while there are still blooms occurring in nearby estuaries (Gobler & Sunda 

2012, Tettelbach et al. 2015). Sampling should be performed in creeks and close to freshwater 

influences to obtain a broader scope of CDOM absorbance and possible effects of CDOM on light 

attenuation, especially if modeling a freshwater influenced system. Running samples on the Turner 

fluorometer is much easier and less expensive than running on the spectrophotometer (Rochelle-

Newall et al. 2014). The correlation curve produced by this study will be useful in converting 

between absorbance and fluorescence.  More measurements, especially from areas higher in 

CDOM absorbance, should be added to the curve to increase accuracy.  In addition, it would be 

beneficial to include measurements from different seasons where concentrations may be higher 

than those sampled in the summer and contribute more to light attenuation (Organelli et al. 2014).  

A threshold evaluation determined the cut-off value and strength of the relationship 

between sufficient light and presence of Z. marina.  The light threshold was determined as Z. 

marina absence under 11 days of 22.5% PLW and Z. marina presence over 11 days of 22.5% 

PLW.  The value 22.5% light through water, the best predictor of Z. marina in Peconic Bay based 

on light, was well within the hypothesized range of Z. marina light requirements, 10–30%  

(Dennison et al. 1993, Dixon & Leverone 1995, Batiuk et al. 2000, Kemp et al. 2004, Kenworthy 

et al. 2014).  Plotting percent light to bottom points throughout Peconic Bay revealed that light 

was not the only factor limiting Z. marina presence within the estuary — 38% of random points 

were misclassified as having present Z. marina when it was absent.  The area of Peconic Bay that 

should hold Z. marina according to the light threshold of 11 days over PLW of 22.5% is 50.32 

km2, but Z. marina only occupies 1.46 km2 (2.90% of the total area).  The majority of this sufficient 

light area is west of Shelter Island (35.36km2), outside of theoretical temperature requirements 

(Pickerell & Schott 2017).  East of Shelter Island, Z. marina occupied only 9.3% of the predicted 

area.  Expansion into these areas by Z. marina is possible, but other factors such as temperature, 

wave action, current, and sediment properties, may be preventing this (Batiuk et al. 2000, 

Kenworthy et al. 2014, Uhrin & Turner 2018).  Temperature is an important factor to the west of 

Shelter Island and results in higher light requirements (Pickerell & Schott 2015, Zimmerman et al. 
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2015). Developing a model that considers both temperature and light will be important for this 

estuary. 

Determining Z. marina presence based on light alone yielded inaccurate results.  

Incorporating other factors into a habitat suitability model should be considered as many of these 

factors vary concurrently.  For example, higher temperatures require higher light levels to offset 

heightened metabolic rates (Zimmerman et al. 1989, Hammer et al. 2018). Temperature and light 

should continue to be monitored in this system, especially with warming waters.  Creating a bio-

optical model with measured inherent and apparent optical properties will establish an accurate 

model of light attenuation based on past and future model parameters.  Minimally, agencies should 

monitor throughout all seasons for chlorophyll, total suspended solids, and CDOM.  While Z. 

marina will adapt to certain environmental stressors, alleviating light stress through water quality 

management is essential for Z. marina populations.  Taking measures to increase water clarity 

could save local species from extirpation due to climate change and allow the seagrass to survive 

and thrive in this estuary.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18 

LITERATURE CITED 
 
Abdelrhman MA (2016) Modeling water clarity and light quality in oceans. J Mar Sci Eng 4:80. 
 
 
Abdelrhman MA (2017) Quantifying contributions to light attenuation in estuaries and coastal 

embayments: Application to Narragansett Bay, Rhode Island. Estuaries and Coasts 40:994–
1012. 

 
 
Arar EJ, Collins GB (1997) In vitro determination of chlorophyll a and pheophytin in marine and 

freshwater algae by fluoroescence. Method 445.0. National Exposure Research Laboratory, 
US EPA, Cincinnati. 

 
 
Baker KS, Smith RC (1981) Optical properties of the clearest natural waters (200–800 nm). Appl 

Opt 20:177. 
 
 
Batiuk RA, Bergstrom PW, Kemp WM, Koch EW, Murray L, Stevenson JC, Bartleson R, Carter 

V, Rybicki NB, Landwehr JM, Gallegos CL, Karrh L, Naylor M, Wilcox DJ, Moore KA, 
Ailstock S, Teichberg M (2000) Chesapeake Bay submerged aquatic vegetation water 
quality and habitat-based requirements and restoration targets: A second technical 
synthesis.CBP/TRS 245/00. EPA 903-R-00-014. U.S. EPA, Chesapeake Bay Program, 
Annapolis, Maryland. 

 
 
Biber PD, Gallegos CL, Kenworthy WJ (2008) Calibration of a bio-optical model in the North 

River, North Carolina (Albemarle-Pamlico Sound): A tool to evaluate water quality impacts 
on seagrasses. Estuaries and Coasts 31:177–191. 

 
 
Biber PD, Paerl HW, Gallegos CL, Kenworthy WJ, Fonseca MS (2005) Evaluating indicators of 

seagrass stress to light. Estuar Indic:193–209. 
 
 
Boynton WR, Kemp WM, Keefe CW (1982) A comparative analysis of nutrients and other 

factors influencing estuarine phytoplankton production. Academic Press, New York, NY, 
USA. 

 
 
Branco AB (2007) Empirical methods for the prediction of optical properties in shallow 

estuaries, Ph.D. thesis, Univ. of Conn., Groton, Conn. 
 
 
 



 

 19 

Branco AB, Kremer JN (2005) The relative importance of chlorophyll and Colored Dissolved 
Organic Matter (CDOM) to the prediction of the diffuse attenuation coefficient in shallow 
estuaries. Estuaries 28:643–652. 

 
 
Carroll JM, Peterson BJ, Bonal D, Weinstock A, Smith CF, Tettelbach ST (2010) Comparative 

survival of bay scallops in eelgrass and the introduced alga, Codium fragile, in a New York 
estuary. Mar Biol 157:249–259. 

 
 
Carruthers TJB, Longstaff BJ, Dennison WC, Abal EG, Aioi K (2001) Measurement of light 

penetration in relation to seagrass. In: Global Seagrass Research Methods. Elsevier Science, 
p 369–392 

 
 
Dennison WC, Alberte RS (1985) Role of daily light period in the depth distribution of Zostera 

marina (eelgrass). Mar Ecol Prog Ser 25:51–61. 
 
 
Dennison WC, Marshall GJ, Wigand C (1989) Effect of “brown tide” shading on eelgrass 

(Zostera marina L.) distributions. In: In E. M. Cosper, V.M. Bricelj, and E.J. Carpenter 
(eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and 
other Unusual Blooms. Lecture Notes on Coastal and Estuarine Studies. Springer-Verlag, 
New York. p 675–692 

 
 
Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk 

RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–
94. 

 
 
Dixon JL, Osburn CL, Paerl HW, Peierls BL (2014) Seasonal changes in estuarine dissolved 

organic matter due to variable flushing time and wind-driven mixing events. Estuar Coast 
Shelf Sci 151:210–220. 

 
 
Dixon L, Leverone JR (1995) Light Requirements of Thalassia testudinum in Tampa Bay, 

Florida. Final Rept. SW Florida Water Management District, Mote Marine Lab Tech Rept, 
vol. 425. 

 
 
Etheridge SM, Roesler CS (2004) Temporal variations in phytoplankton, particulates, and 

colored dissolved organic material based on optical properties during a Long Island brown 
tide compared to an adjacent embayment. Harmful Algae 3:331–342. 

 
 



 

 20 

Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, 
Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as 
a globally significant carbon stock. Nat Geosci 5:505–509. 

 
 
Fox J, Weisberg S, Price B (2020) Package ‘car’. 1–149. 
 
 
Gallegos CL (2001) Calculating optical water quality targets to restore and protect submersed 

aquatic vegetation: Overcoming problems in partitioning the diffuse attenuation coefficient 
for photosynthetically active radiation. Estuar Res Fed Estuaries 381:381–397. 

 
 
Gallegos CL, Kenworthy WJ (1996) Seagrass depth limits in the Indian River Lagoon (Florida, 

U.S.A.): Application of an optical water quality model. Estuar Coast Shelf Sci 42:267–288. 
 
 
Gobler CJ, Sunda WG (2012) Ecosystem disruptive algal blooms of the brown tide species, 

Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae 14:36–45. 
 
 
Greening H, Janicki AJ, Sherwood ET, Pribble R, Johansson JOR (2014) Ecosystem responses 

to long-term nutrient management in an urban estuary: Tampa Bay, Florida, USA. Estuar 
Coast Shelf Sci 151:1–16. 

 
 
Greiner JT, McGlathery KJ, Gunnell J, McKee BA (2013) Seagrass restoration enhances ‘Blue 

Carbon’ sequestration in coastal waters. PLoS One 8:1–8. 
 
 
Hammer KJ, Borum J, Hasler-Sheetal H, Shields EC, Sand-Jensen K, Moore KA (2018) High 

temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera 
marina. Mar Ecol Prog Ser 604:121–132. 

 
 
Hardy CD (1976) A preliminary description of the Peconic Bay Estuary. Marine Sciences 

Research Center, State University of New York at Stony Brook. Special Report 3. Stony 
Brook. 

 
 
Hijmans RJ (2019) Package ‘raster’: Geographic data analysis and modeling with raster data. R 

package version 3.0-7. 
 
 
Hijmans RJ, Phillips S, Leathwick J, Maintainer JE (2017) Package ’dismo’- species distribution 

modeling. R package version 1.1-4. 



 

 21 

Hoge FE, Vodacek A, Blough N V. (1993) Inherent optical properties of the ocean: Retrieval of 
the absorption coefficient of chromophoric dissolved organic matter from fluorescence 
measurements. Limnol Oceanogr 38:1394–1402. 

 
 
Hughes BB, Eby R, Van Dyke E, Tinker MT, Marks CI, Johnson KS, Wasson K (2013) 

Recovery of a top predator mediates negative eutrophic effects on seagrass. Proc Natl Acad 
Sci U S A 110:15313–15318. 

 
 
James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning with 

applications in R. Springer, New York, NY, USA. 
 
 
Jordan TE, Correll DL, Miklas J, Weller DE (1991) Long-term trends in estuarine nutrients and 

chlorophyll, and short- term effects of variation in watershed discharge. Mar Ecol Prog Ser 
75:121–132. 

 
 
Kemp WM, Batiuk RA, Bartleson R, Bergstrom PW, Carter V, Gallegos CL, Hunley W, Karrh 

L, Koch EW, Landwehr JM, Moore KA, Murray L, Naylor M, Rybicki NB, Stevenson JC, 
Wilcox DJ (2004) Habitat requirements for submerged aquatic vegetation in Chesapeake 
Bay: Water quality, light regime, and physical-chemical factors. Estuaries 27:363–377. 

 
 
Kenworthy WJ, Gallegos CL, Costello C, Field D, di Carlo G (2014) Dependence of eelgrass 

(Zostera marina) light requirements on sediment organic matter in Massachusetts coastal 
bays: Implications for remediation and restoration. Mar Pollut Bull 83:446–457. 

 
 
Koch EW (2001) Beyond light: Physical, geological, and geochemical parameters as possible 

submersed aquatic vegetation habitat requirements. Estuaries 24:1–17. 
 
 
Koch EW (1999) Sediment resuspension in a shallow Thalassia testudinum banks ex Konig bed. 

Aquat Bot 65:269–280. 
 
 
Krause-Jensen D, Carstensen J, Nielsen SL, Dalsgaard T, Christensen PB, Fossing H, Rasmussen 

MB (2011) Sea bottom characteristics affect depth limits of eelgrass Zostera marina. Mar 
Ecol Prog Ser 425:91–102. 

 
 
Lavery PS, Mateo MÁ, Serrano O, Rozaimi M (2013) Variability in the carbon storage of 

seagrass habitats and its implications for global estimates of Blue Carbon ecosystem 
service. PLoS One 8:73748. 



 

 22 

Lefcheck JS, Orth RJ, Dennison WC, Wilcox DJ, Murphy RR, Keisman J, Gurbisz C, Hannam 
M, Brooke Landry J, Moore KA, Patrick CJ, Testa J, Weller DE, Batiuk RA (2018) Long-
term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. 
Proc Natl Acad Sci U S A 115:3658–3662. 

 
 
Lloyd S (2014) Nitrogen load modeling to forty-three subwatersheds of the Peconic Estuary. The 

Nature Conservancy. Final Report. 
 
 
NYS Seagrass Taskforce (2009) Final Report of the New York State Seagrass Task Force: 

Recommendations to the New York State Governor and Legislature. 1–69. 
 
 
Organelli E, Bricaud A, Antoine D, Matsuoka A (2014) Seasonal dynamics of light absorption 

by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea 
(BOUSSOLE site). Deep Res Part I Oceanogr Res Pap 91:72–85. 

 
 
Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes RA, 

Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A 
global crisis for seagrass ecosystems. Bioscience 56:987–996. 

 
 
Pickerell C, Schott S (2015) Peconic Estuary Program 2015 long-term eelgrass (Zostera marina) 

monitoring program. Marine Program Cornell Cooperative Extension prepared for the 
Peconic Estuary Program. Report 16. 

 
 
Pickerell C, Schott S (2017) Peconic Estuary Program 2016 long-term eelgrass (Zostera marina) 

monitoring program. Marine Program Cornell Cooperative Extension prepared for the 
Peconic Estuary Program. Report 17. 

 
 
Reynolds LK, Waycott M, McGlathery KJ, Orth RJ (2016) Ecosystem services returned through 

seagrass restoration. Restor Ecol 24:583–588. 
 
 
Rochelle-Newall E, Hulot FD, Janeau JL, Merroune A (2014) CDOM fluorescence as a proxy of 

DOC concentration in natural waters: A comparison of four contrasting tropical systems. 
Environ Monit Assess 186:589–596. 

 
 
Schaefer S (2017) Peconic Estuary State of the Bay. Peconic Estuary Program. 
 
 



 

 23 

Short FT, Muehlstein LK, Porter D (1987) Eelgrass wasting disease: Cause and recurrence of a 
marine epidemic. Biol Bull 173:557–562. 

 
 
Stevenson JC, Staver LW, Staver KW (1993) Water quality associated with survival of 

submersed aquatic vegetation along an estuarine gradient. Estuaries 16:346–361. 
 
 
Tettelbach ST, Peterson BJ, Carroll JM, Furman BT, Hughes SWT, Havelin J, Europe JR, Bonal 

DM, Weinstock AJ, Smith CF (2015) Aspiring to an altered stable state: Rebuilding of bay 
scallop populations and fisheries following intensive restoration. Mar Ecol Prog Ser 
529:121–136. 

 
 
Thayer GW (1974) Identity and regulation of nutrients limiting phytoplankton production in the 

shallow estuaries near Beaufort, N.C. Oecologia 14:75–92. 
 
 
Uhrin A V., Turner MG (2018) Physical drivers of seagrass spatial configuration: the role of 

thresholds. Landsc Ecol 33:2253–2272. 
 
 
USEPA (1999) Total Suspended Solids (TSS) EPA Method 160.2 (Gravimetric, Dried at 103-

105 E C). US Environmental Protection Agency, Washington, DC. 
 
 
Ward LG, Michael Kemp W, Boynton WR (1984) The influence of waves and seagrass 

communities on suspended particulates in an estuarine embayment. Mar Geol 59:85–103. 
 
 
Zimmerman RC, Hill VJ, Gallegos CL (2015) Predicting effects of ocean warming, acidification, 

and water quality on Chesapeake region eelgrass. Limnol Oceanogr 60:1781–1804. 
 
 
Zimmerman RC, Smith RD, Alberte RS (1989) Thermal acclimation and whole-plant carbon 

balance in Zostera marina L. (eelgrass). J Exp Mar Bio Ecol 130:93–109. 



 

 24 

FIGURES 
 
 

 
 

  

Figure 1: Peconic Bay, Long Island, NY.  
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  Figure 2: Z. marina extent in Peconic Bay delineated from 2017 orthoimagery. 
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Figure 3: Water quality sampling locations in Peconic Bay for 2017 and 2018.  Type 
indicates whether sampling occurred at Z. marina (SG) or non- Z. marina (WQ) sites. 
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Figure 4: Grouping designations (A-E) for water quality sampling locations in Peconic Bay 
for 2017 and 2018. 
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  Figure 5: Boxplot of chlorophyll concentrations (µg/L) at individual sites.  ANOVA was 
run to determine significance between sites (F-value=2.565, df=14) followed by a Tukey 
HSD test.  Red “a” denotes a significant difference in concentrations between that site and 
WQ2.  
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  Figure 6: Boxplot of TSS concentrations (mg/L) at individual sites.  ANOVA was run to 
determine significance between sites (F-value=1.064, df=14). 
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Figure 7: Boxplot of CDOM absorptions at 350nm (m-1) at individual sites.  ANOVA was 
run to determine significance between sites (F-value=0.55, df=14). 
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Figure 8: Boxplot of Kd (m-1) at individual sites.  ANOVA was run to determine 
significance between sites (F-value=5.542, df=14) followed by a Tukey HSD test.  Red “a” 
denotes a significant difference in concentrations between that site and WQ4, blue “b” 
between SG1 and that site, and purple “a, b” denotes statistical differences between that site 
and WQ4 and SG1.  
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  Figure 9: Boxplot of chlorophyll concentrations (µg/L) for each region.  ANOVA was run 
to determine significance between sites (F-value=4.965, df=4) followed by a Tukey HSD 
test.  Red “a” denotes a significant difference in concentrations between that region and 
region A. 
 



 

 33 

 

  Figure 10: Boxplot of TSS concentrations (mg/L) for each region.  ANOVA was run to 
determine significance between sites (F-value=0.239, df=4). 
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  Figure 11: Boxplot of CDOM absorptions at 350nm (m-1) for each region.  ANOVA was 
run to determine significance between sites (F-value=0.85, df=4). 
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  Figure 12: Boxplot of Kd (m-1) for each region. ANOVA was run to determine significance 
between sites (F-value=8.187, df=4) followed by a Tukey HSD test.  Red “a” denotes a 
significant difference in concentrations between that region and region B. 
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A 

Figure 13: Days over PLW > 10% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 
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Figure 14: Days over PLW > 10% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 15: Days over PLW > 15% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 

B 
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Figure 16: Days over PLW > 15% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 17: Days over PLW > 18.5% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 

B 
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  Figure 18: Days over PLW > 18.5% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 19: Days over PLW > 20% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 

B 
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Figure 20: Days over PLW > 20% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 21: Days over PLW > 22.5% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 

B 
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Figure 22: Days over PLW > 22.5% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 23: Days over PLW > 25% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 

B 
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Figure 5: Peconic Bay CDOM (ppb) fluorometric and CDOM (a440) spectrophotometric 
measurements from three sampling days at all water quality sites in 2018 (p = 2.26 e-5). 
 

Figure 24: Days over PLW > 25% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 25: Days over PLW > 30% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 

A 

B 
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Figure 6: Peconic Bay CDOM spectrophotometric measurements at 440nm (a440) and 
350nm (a350) from three sampling days at all water quality sites in 2018 (p = 2.594 e-12). 
 

Figure 26: Days over PLW > 30% at Z. marina, (A) SG1, (B) SG2, (C) SG3, (D) SG4, 
(E) SG5, calculated from Kd and bathymetry.  Depths > 5m were excluded (hash) due to 
low light levels and no Z. marina growing deeper than 4.5m at MLW.  



 

 50 

  

Figure 27: Days over each threshold of percent light through water (PLW) for points 
with Z. marina (5,000) in Peconic Bay. 

Figure 28: Median, 25th and 75th percentile PLW values for present (5,000) and absent 
(45,000) Z. marina points in Peconic Bay. 
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  Figure 29: Peconic Bay CDOM fluorometric (ppb) and CDOM spectrophotometric (a440) 
measurements from three sampling days at every water quality site (p < 0.001). 
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Figure 30: Peconic Bay CDOM spectrophotometric measurements at 440nm (a440) and 
350nm (a350) from three sampling days at every water quality site (p < 0.001). 
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Figure 31: Peconic Bay CDOM spectrophotometric (a350) and CDOM fluorometric (ppb) 
measurements from three sampling days at every water quality site (p < 0.001). 
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TABLES 
 
  

Table 1: Site minimum, median, and maximum for chlorophyll-a (µg/L), TSS (mg/L), 
CDOM (a350), and Kd (m-1).  
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Table 2: Grouped minimum, median, and maximum for chlorophyll-a (µg/L), TSS 
(mg/L), CDOM (a350), and Kd (m-1)  
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  Table 3: Interaction between Kd and chlorophyll (µg/L) at each site.  Bold p-values 
indicates significant interactions (p < 0.05).  The significance (sig) of each 
parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 
0.001). 
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  Table 4: Interaction between Kd and TSS (mg/L) at each site.  Bold p-values 
indicates significant interactions (p < 0.05).  The significance (sig) of each 
parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 
0.001).  
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  Table 5: Interaction between Kd and CDOM (a350) at each site.  Bold p-values 
indicates significant interactions (p < 0.05).  The significance (sig) of each 
parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 
0.001). 
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Table 7: Interaction between Kd and TSS (mg/L) for each spatial group.  Bold p-
values indicates significant interactions (p < 0.05).  The significance (sig) of each 
parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 
0.001). 

Table 6: Interaction between Kd and chlorophyll (µg/L) for each spatial group.  
Bold p-values indicates significant interactions (p < 0.05).  The significance (sig) of 
each parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ ***“ 
(p < 0.001). 
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  Table 8: Interaction between Kd and CDOM (a350) for each spatial group.  Bold p-
values indicates significant interactions (p < 0.05).  The significance (sig) of each 
parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 
0.001). 

Table 9: Interaction between Kd and each parameter for all of Peconic Bay.  Bold p-
values indicates significant interactions (p < 0.05).  The significance (sig) of each 
parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 
0.001). 
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  Table 10: Multiple linear regression (Kd ~ TSS + Chlorophyll + CDOM) at each 
sampling site.  Bold p-values indicates significant interactions (p < 0.05).  The 
significance (sig) of each parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** 
“ (p < 0.01), “ *** “ (p < 0.001). 

Table 11: Multiple linear regression (Kd ~ TSS + Chlorophyll + CDOM) for each 
spatial group, and all of Peconic Bay.  Bold p-values indicates significant 
interactions (p < 0.05).  The significance (sig) of each parameter is denoted by “.” (p 
< 0.1), “ * ” (p < 0.05), “ ** “ (p < 0.01), “ *** “ (p < 0.001). 
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  Table 12: Multiple linear regression (Kd ~ TSS + Chlorophyll) at each sampling 
site.  Bold p-values indicates significant interactions (p < 0.05).  The significance 
(sig) of each parameter is denoted by “.” (p < 0.1), “ * ” (p < 0.05), “ ** “ (p < 
0.01), “ *** “ (p < 0.001). 
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  Table 13: Multiple linear regression (Kd ~ TSS + Chlorophyll) for each spatial 
group, and all of Peconic Bay.  Bold p-values indicates significant interactions (p < 
0.05).  The significance (sig) of each parameter is denoted by “.” (p < 0.1), “ * ” (p 
< 0.05), “ ** “ (p < 0.01), “ *** “ (p < 0.001). 
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Table 14: Evaluation of PLW threshold values for determining Z. marina 
presence/absence in Peconic Bay.  Value indicates the cut-off of presence or 
absence of Z. marina s found by maximizing the TPR (true positive rate) and TNR 
(true negative rate) in the evaluate function (R, ‘dismo’).  FPR and FNR are the 
false positive and negative rates, respectively. 
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Chapter 2 
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INTRODUCTION 

 

 Seagrasses are an integral—but declining—habitat type in coastal ecosystems.  Seagrasses 

provide many ecosystem functions: nursery habitats for juvenile fishes, refuge and foraging habitat 

for many finfishes and shellfish, and coastal food web enhancement (Thayer & Stuart 1974, 

Jenkins et al. 1997, Heck et al. 2008, Beck et al. 2018).  As an ecosystem engineer, seagrasses 

cycle nutrients, reduce wave attenuation and currents, stabilize sediments, and sequester carbon 

(Costanza & D’Arge 1997, Orth et al. 2006, Bos et al. 2007, Fourqurean et al. 2012, Reynolds et 

al. 2016).  Successful application of habitat suitability models elsewhere in the U.S. through 

improvements in water quality allowed for successful restoration of seagrasses in the Indian River 

Lagoon, Tampa Bay, Chesapeake Bay, and coastal Virginia (Reynolds et al. 2016, Greening et al. 

2014).  Restored eelgrass (Zostera marina)—within 10 years of seeding—sequestered carbon and 

removed nitrogen at the same rate as established beds.  Additionally, restored beds increased 

species diversity and ecosystem services comparable to pre-loss levels (Greiner et al. 2013, 

Reynolds et al. 2016).  Zostera marina, a temperate species, grows in the Northeast Atlantic from 

North Carolina to the Arctic Circle (Krause-Jensen & Duarte 2014). Anthropogenic stressors, 

including light reduction and temperature increases, appear to explain a 1.4% average yearly 

decline in coverage (Short et al. 2011, Lefcheck et al. 2017).  Rapidly warming temperatures and 

subsequent northward shift of Z. marina are predicted to result in complete extirpation in Long 

Island Sound by 2100 (Wilson & Lotze 2019). 

 Peconic Bay, designated as one of the “Estuaries of National Significance” by the United 

States Environmental Protection Agency (US EPA), lies between the eastern North and South 

“Forks” of Long Island, New York, USA.  Comprised of five smaller bays with increasing 

residence times and shallower depths moving westward, Z. marina is found only in the eastern 

most two bays (Hardy 1976, Pickerell & Schott 2017). Widespread loss of Z. marina occurred 

during the 1930s from the wasting disease Labyrinthula zosterae, and then decades later in the 

1980s from several brown tide events (Short et al. 1987, Dennison et al. 1989).  Restoration efforts 

west of Shelter Island have failed (Pickerell & Schott 2017).  Zostera marina coverage declined 

~35% from 2000 to 2015 in Peconic Bay despite no brown tide blooms for the 25 years to present 

(Schott 2015, Tettelbach et al. 2015). Established in 2006, the New York State (NYS) Seagrass 

Taskforce evaluated potential causes of Z. marina declines in Long Island waters.  They concluded 
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that declines were from insufficient light levels and noted the vulnerability of Z. marina in Peconic 

Bay to hardened shorelines and rising temperatures due to climate change (NYS Seagrass 

Taskforce 2009). 

 

 

Properties of habitat suitability for Z. marina 

The creation of a bio-optical model to predict light attenuation will advance the 

establishment of nutrient management thresholds for water quality targets in Peconic Bay (NYS 

Seagrass Taskforce 2009). High nutrient loading causes algal and epiphyte blooms, blocking light 

from reaching seagrass leaves (Neckles et al. 1993, Short et al. 1995).  Seagrasses with high 

belowground biomass such as Z. marina also have higher light requirements, due to the added high 

oxygen demand of below-ground root and rhizome structures (Dennison et al. 1993, Nielsen et al. 

2002).  Depending on temperature and sediment composition, Zostera marina requires a minimum 

of ~10–30% surface light attenuating to depth (Dennison et al. 1993, Batiuk et al. 2000, Kemp et 

al. 2004, Moore et al. 2012, Kenworthy et al. 2014).  Higher temperatures and organic matter 

increase the photosynthetic demand which heightens light requirements (Koch & Erskine 2001, 

Moore 2004).  Failure to meet photosynthetic demand results in depleted carbon reserves and 

reduced pumping of oxygen to the rhizosphere (Dennison & Alberte 1985, Dennison 1987, 

Goodman et al. 1995, Greve et al. 2003, Pulido & Borum 2010, McPherson et al. 2015, Moreno-

Marín et al. 2018, Gao et al. 2019).  Extended duration of these metabolic imbalances results in 

mortality (Goodman et al. 1995, Kenworthy et al. 2014).  Improvements to water quality increase 

the light availability to Z. marina by reducing light attenuation by phytoplankton and epiphytes, 

which may offset stresses associated with high water temperatures (Staehr & Borum 2011). 

Higher water temperatures increase the metabolic rate of Z. marina, which increases the 

respiration rate and photosynthetic demand.  Optimal temperatures for Z. marina are between 10 

and 25 ºC: prolonged exposure (30+ days) above 25 ºC induces stress, and short-term exposure 

between 27 and 30 ºC can cause mortality (Zimmerman et al. 1989).  Water temperature in Long 

Island Sound (Long Island, NY, USA) increased 0.03 ºC annually since 1948, coincident with an 

increase in “summer days”  (days over 21 ºC; Rice et al. 2014).  A greater occurrence of extreme 

temperature events (over 28 ºC) and an increase by 22 “summer days” in the Chesapeake Bay 

region since the 1950’s is known to have negatively affected Z. marina populations: at its southern 
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extent in the North Atlantic, Z. marina exhibits a modified phenology with earlier summer peaks 

in biomass (Shields et al. 2018).  In response to extreme heat stress, some Pacific populations 

exhibit an annual lifecycle, relying on seeds to replace the previous year’s coverage (Santamaría-

Gallegos et al. 2000).  Therefore, studies on response and adaptations of Z. marina populations in 

Peconic Bay to rising temperatures and its interactions with other factors, such as light and 

sediment—are warranted.   

Sediment properties influence where Z. marina exists, however, Z. marina also changes 

the composition of the sediment.  Organic matter accumulation occurs due to either increased 

deposition of fine particles in the slowing of the current by seagrass canopies or reduced 

photosynthesis from light limitation (Grady 1981, Kemp et al. 1984, Newell et al. 1986).  Net 

negative production causes a reduction in oxygen pumping into the sediments by the plant and 

reduced aerobic microbial decomposition, leading to an accumulation of organic matter in the 

sediments over time (Goodman et al. 1995, Lee & Dunton 1996).  High organic matter 

accumulations—whether naturally or from light reduction—lead to an increased light requirement 

(Kenworthy & Fonseca 1996, Kenworthy et al. 2014).  When roots do not release enough oxygen 

to compensate for high organic matter under light limited conditions, hydrogen sulfide will diffuse 

into the rhizomes (Pregnall et al. 1984, Smith et al. 1988, Lee & Dunton 1996).  Hydrogen sulfide, 

an end-product of anaerobic respiration, causes seagrass mortality at high concentrations (>400 

µM porewater; Dennison & Alberte 1985, Goodman et al. 1995). Therefore, both the reduction in 

physical flow or light limitation can increase organic matter content and concentrations of 

hydrogen sulfide in the sediment of seagrasses. (Goodman et al. 1995, Pérez et al. 2007, Krause-

Jensen et al. 2011, Kenworthy et al. 2014).   

Alterations in sediment composition may also occur as a result of modifications to natural 

shorelines and high wind events (Douglas & Rippey 2000, Miles et al. 2001).  Hardened shorelines 

reflect waves and can cause a long-shore current, increasing sediment re-suspension and 

movement (Miles et al. 2001).  The altered water movement and increased suspended sediments 

caused by hardened shorelines result in increased light attenuation and physical damage to roots 

and rhizomes (Patrick et al. 2016, Landry & Golden 2018, Currin 2019).  Landry & Golden (2016) 

found that SAV (submerged aquatic vegetation) adjacent to hardened shorelines had significantly 

reduced species diversity, evenness, and percent cover when compared to natural shorelines.  They 

also noted the threat of sea level rise to SAV adjacent to hardened shorelines, a process they termed 
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“squeezing”, which prevents the landward migration of seagrasses between the hardened shoreline 

and deepening water.  In Peconic Bay, hardened shorelines increased by 130% from 2003 to 2016, 

potentially spurred by Hurricane Sandy in 2014 (Peconic Estuary Program unpublished data).  

Additionally, Patrick et al. (2016) identified bulkheads as the most deleterious type of hardened 

shoreline to seagrasses in Chesapeake Bay: bulkhead length in Peconic Bay increased by 170% 

between 2003 and 2016.  Hardened shorelines intensify the detrimental effects of wind induced 

waves and boat action on seagrass (Patrick et al. 2016).   

Relative wave exposure (RWE) is determined from wind speed, fetch, and depth (Fonseca 

& Malhotra 2007). High wind exposure and tidal currents degrade seagrass bed edges, suspend 

sediments, bury plants, and expose roots (Patriquin 1975, Kirkman & Kuo 1990, Fonseca & Bell 

1998, Batiuk et al. 2000, van Katwijk & Hermus 2000, Frederiksen et al. 2004).  Uhrin & Turner 

(2018) found a change point threshold value between 679 and 774 J m-1 (RWE) for Z. marina in 

Chesapeake Bay (Uhrin & Turner 2018).  Prior to this study, the interaction between RWE and Z. 

marina has not been evaluated in Peconic Bay.  Modeling Z. marina habitat suitability in Peconic 

Bay incorporated light, temperature, sediment characteristics, hardened shorelines, and wave 

exposure, as well as possible interactions between variables. 

 

 

Modeling current and future distributions   

 Species distribution modeling (SDM) predicts the geographic range of species from 

correlation of species with environmental parameters (Elith & Leathwick 2009).  SDM’s have 

increased in complexity and frequency of use in the marine environment, especially over the past 

10 years (Robinson et al. 2017).  Popular machine-learning SDM’s previously used to predict the 

presence of seagrass species include Maxent, generalized additive models (GAMs), boosted 

regression trees (BRT), and random forest models, among others (Valle et al. 2013, Folmer et al. 

2016, Effrosynidis et al. 2018, Wilson & Lotze 2019).  Classification and regression trees (CART) 

predict outcomes based on several variables, with some variables used more than once.  For 

example, Z. marina survives at a range of thresholds: high water temperature typically yields a 

high light requirement, but lower temperatures lessen the light requirement.  A CART models a 

‘tree’ of binary outcome values (‘present’ or ‘absent’) based on combinations of variables 

determined by the model (De’Ath & Fabricius 2000).  A random forest classification model uses 
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a “forest” of CARTs to decrease error and correlation as well as increase accuracy (James et al. 

2013).  This random forest model predicts present and absent values for cells to create a habitat 

suitability model in Peconic Bay for Z. marina. 

 The aim of this study was to better understand the factors governing Z. marina distribution 

in Peconic Bay.  First, we used random forest modeling with light, temperature, sediment, wind, 

and hardened shoreline variables to create a model of distribution—a habitat suitability model.  

Second, via recursive feature elimination, we calculated feature importance of variables that 

determined Z. marina distribution in Peconic Bay.  We hypothesized light would be a limiting 

factor of distribution in Peconic Bay, followed by temperature, wind, sediment, and hardened 

shorelines.  We aimed to create thresholds of survival based off outputs from the random forest 

modeling.  Of these variables, only light could be addressed from a management perspective.  We 

also created a restoration potential model that established areas of high probability for restoration 

success.  Lastly, using the habitat suitability model, we modeled future scenarios of temperature 

and sea level rise to predict areas at risk to habitat loss.  Peconic Bay represented an understudied 

water body regarding factors influencing Z. marina habitat suitability.  As such, successful 

modeling of survival thresholds and habitat suitability improved future restoration efficacy of Z. 

marina in this estuary. 
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METHODS 

 

Study Area 

The study area encompassed most of Peconic Bay: from Flanders Bay to western 

Gardiner’s Bay (Figure 1).  Peconic Bay receives little freshwater influence from riverine sources.  

Freshwater input originates mainly from submarine groundwater discharge and results in estuarine 

salinity similar to oceanic salinity (Hardy 1976, Soren 1978, Barusich et al. 2012).  Two 

seagrasses, Z. marina and Ruppia maritima, currently exist in Long Island waters.  The 

predominant seagrass, Z. marina, inhabited the clearer, cooler, oceanic influenced waters east of 

Shelter Island.  Conversely, and not included in this study, R. maritima occupied turbid, warm, 

shallow creeks throughout the estuary (Cashin Associates 1996).  Peconic Bay, divided for this 

study into west and east of Shelter Island, was determined by Z. marina absence (western) and 

presence (eastern). 

Characterized by warmer temperatures, longer residence time, and shallower bathymetry, 

western Peconic Bay currently lacks any Z. marina, completely lost prior to 1988 (Hardy 1976, 

Dennison et al. 1989).  Occasionally, Z. marina flourishes west of Shelter Island in locations 

heavily influenced by groundwater, such as in Bullhead Bay, Southampton, NY (Pickerell & 

Schott 2017).  Excluding areas with known groundwater influence from this study avoided 

possible confounding factors.  Eastern Peconic Bay, defined by cooler temperatures attributed to 

deeper depths and higher oceanic flushing, contains the remaining Z. marina population (Hardy 

1976).  Zostera marina in the study area inhabited 0.001–4.53 m at mean low water (MLW) and 

0.96–5.48 m at mean high water (MHW, Figure 2).  A mask called the “ideal bathymetry layer” 

constrained the analysis to a depth interval of 0–5 m (MLW), focusing on depths of Z. marina 

found in the study area (Figure 3).  Subject to ice-scouring, shallow areas—typically 0.5 m or less 

and exposed to wave action—may prevent Z. marina growth (Duarte & Kalff 1990).  Additionally, 

Z. marina at depths greater than 5 m may experience light limitation, typically resulting in a distinct 

“deep edge” of beds existing along depth gradients (Krause-Jensen et al. 2003). 
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Field Sampling 

Water quality sampling was performed in Peconic Bay at 15 sites (Figure 4) from May– 

October in 2017 and 2018 every two weeks.  Fifteen water quality sampling sites were determined 

by choosing five areas with extant Z. marina (denoted as “SG”) and ten areas without extant Z. 

marina (denoted as “WQ”).  The ten “WQ” sites—without current Z. marina—were chosen from 

areas with previous coverage of Z. marina that has since been lost.  Photosynthetically active 

radiation (PAR) light measurements were taken using a Li-COR 1400 handheld console equipped 

with a deck and underwater quantum sensor: the light attenuation coefficient (Kd) was determined 

using the Beer-Lambert exponential decay function (Carruthers et al. 2001).  At the deep edge for 

“SG” sites and at 1–1.5 m MLW for “WQ” sites, HOBO pendant temperature loggers took 

measurements every 15 minutes from June through October at all stations.  The deep edge of Z. 

marina beds was estimated with aerial imagery, ground-truthed using SCUBA, and mapped with 

GPS.  Sediment cores of 5.25-cm diameter and 10-cm depth were taken annually to determine 

percent organic matter (POM) and grain size at each site in 2018 and 2019.  At sites with extant Z. 

marina, sediment coring occurred both in and out (0.25 m from deep edge) of the bed.   Sediment 

was dried and sieved into two grain size classes, larger and smaller than fine-grained (<63 µm, silt 

and clay) sediment (Poppe et al. 2000). Sediment was combusted and reweighed for total matter 

loss to determine POM (Schumacher 2002).  

 

 

Raster Layers 

For all rasters: cell size was 3 m2 on edge; interpolation between points was performed 

with inverse distance weighting (IDW); and clipped to the “study area”.  All spatial functions were 

performed in ArcGIS v.10.6, unless otherwise noted.  This study area excluded interior harbors 

and creeks which may not respond to the same factors as the bay proper, e.g. groundwater 

influence.  Vegetation in most of these areas has not been surveyed since 1994 (Cashin Associates 

1996).   

Bathymetry data was obtained from the NOAA NCEI 2014 Hurricane Sandy DEM 

(LIDAR; horizontal and vertical resolution of 10 cm).   Bathymetry was transformed from 

NAVD88 to MLW using the NOAA vertical datum converter, VDatum v.4.0.1 (Figure 5, NOAA 

2019).  Zostera marina in the study area covered 1.46 km2.  Delineation of Z. marina using 
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National Agriculture Imagery Program (NAIP) orthoimagery from 2017 was compared with 

ground-truthed delineation of 2014 imagery by Cornell Cooperative Extension of Suffolk County 

imagery for accuracy (Figure 2; Schott 2015).  Zostera marina presence (value = 1) or absence 

(value = 0) was determined for all cells in the study area. 

Kd values were interpolated between sampling sites.  Percent light through water—the 

amount of surface light reaching the bottom of the water column—was calculated using the raster 

calculator with Equation 1 (Batiuk et al. 2000): 

𝑃𝐿𝑊 = 100 ∗ 𝑒𝑥𝑝2*!∗, 

where Z was depth (m) at MLW.  PLW was calculated for all days sampled (18 days; Figure 6).  

Application of PLW “threshold” values at 10, 15, 18.5, 20, 22.5, 25, and 30%—chosen based on 

literature recommendation—created seven light layers for analysis (Dennison et al. 1993, Dixon 

& Leverone 1995, Batiuk et al. 2000, Kemp et al. 2004).  Raster cells were reclassified using the 

‘raster’ R package (Hijmans 2019).  Cells in each PLW threshold layer received either a 0 (under) 

or 1 (over) for every day sampled resulting in a score of 0–18.  For example, a cell with a PLW 

value under 22.5% received a 0 and a cell over 22.5% received a 1 (using the threshold of 22.5% 

PLW for one day of sampling).  Each reclassified cell contained a 0 or 1 for an individual sampling 

day and threshold (126 layers).  Adding together resultant days of reclassified cells at each 

threshold produced seven layers with values between 0 and 18. Three additional layers—Q1 (first 

quartile), Q2 (median), and Q3 (third quartile) of PLW values (0–100%) for all sampling days, 

computed with the ‘raster’ package in R—were also used to compare light in this analysis (Hijmans 

2019). 

Temperature data was calculated from HOBO dataloggers deployed in summer of 2018, 

the warmest, and “highest” heat stress of the four summers sampled (2016–2019, Figure 7).  A 

jitter function was applied to the data to lessen erroneous measurements and smooth temperature 

values using the ‘zoo’ R package (Zeileis & Grothendieck 2005).  A moving average of 5 data 

points—1.25 hours or 30 minutes on either side of a temperature measurement—was calculated 

for every measurement.  Cumulative and sequential hours over designated “stressful” temperatures 

were determined for each recovered HOBO.  Temperatures over 25, 27, and 30 ºC represent the 

low, intermediate, and high heat stress for Z. marina, respectively.  Cumulative temperatures over 

25–30 ºC (at every 1 ºC) were calculated to determine total heat stress during the summer with the 

‘dplyr’ package in R (Wickham et al. 2020).  Additionally, sequential temperatures over 25 and 
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27 ºC were calculated to determine the longest period of time spent above the low and intermediate 

heat stress with the ‘rle’ function in R (R Core Team 2018).  Temperatures over 30 ºC were 

infrequent during the sampling period, and as such, excluded from sequential data.  The highest 

cumulative hours over 30 ºC was 15 hours at the westernmost site.  The cumulative and sequential 

hour layers were interpolated between sites (Figure 8). 

The Peconic Estuary Program provided unpublished hardened shoreline and bulkhead 

shapefiles.  The shoreline of the study area was 26% armored as of 2016.  Euclidian distance and 

direction determined the straight-line distance and direction of all cells to hardened shorelines and 

bulkheads (Figure 8).  Relative wave exposure (RWE) values were computed using the NOAA 

Wave Exposure Model, WEMo v.5.0 (Fonseca & Malhotra 2007).  Inputs to the model included: 

bathymetry at MLW; wind data in 2018 (entire year, top 20% wind speeds) from the East Hampton 

airport (Station ID: WBAN: 64761); shoreline from the NOAA shoreline data explorer (CUSP); 

and 280 random points within the ideal bathymetry layer.  Highest stress from waves occurred at 

MLW.  Computed RWE values at the random points were then interpolated throughout the bay 

(Figure 9).  

Random points established within the ideal bathymetry layer (45,000 points) and Z. marina 

delineations (5,000 points) comprised a 50,000-point shapefile.  Using the ‘raster’ R package, 25 

variable (post-interpolation) values were extracted to each point in the shapefile: depth, days over 

10, 15, 18.5, 20, 22.5, 25, and 30% percent light through water (PLW), 25, 50, 75th IQR of PLW, 

relative wave exposure, hours over 25, 26, 27, 28, 29, and 30 ºC, sequential hours over 25 and 27 

ºC, distance and direction to hardened shoreline, distance and direction to bulkhead shoreline, and 

Z. marina presence (Figure 10; Hijmans 2019).   

 

 

Presence/Absence Classification 

The 50,000 random points were run through a random forest classification with the 

‘randomForest’ R package to predict presence or absence of Z. marina using 24 variables (Figure 

10; Liaw & Wiener 2002).  Random forest classification is a machine learning algorithm that can 

use many correlated variables—particularly important with the light and temperature variables in 

this model.  Random forest classification creates a model of high accuracy and low correlation 

between trees by using ‘out-of-bag’ (OOB) bootstrap sampling of values and feature randomness.  
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‘Out-of-bag’ bootstrap sampling of values reduces model error (a third of random values removed 

with replacement from each tree) creating a “unique” tree and outcome each time.  Feature 

randomness within each tree (limiting number of variables at each node split) reduces correlation 

between trees.  The number of variables used at each split is equal to the square root of the number 

of predictor variables which allows for different set of variables to be “tried” at each split (Breiman 

2001).   

The random point shapefile was split into a training set of 37, 500 points and test set of 

12,500 points, maintaining a 10% “presence” of Z. marina points in each set using ‘caTools’ 

package in R (Tuszynski 2019). The random forest function ran first without removal of any 

features, with unlimited max nodes and 500 trees.  However, since several features were co-

varying, determining the most important features within groups (light, temperature, hardened 

shorelines) led to a stronger model by decreasing correlation between trees.  Principal component 

analysis (PCA, scaled and centered) confirmed variable groupings.  Feature importance—ranking 

features based on the increase or decrease of model accuracy through removal of that feature—

was used to determine which features to keep in the model with recursive feature elimination in R 

package ‘caret’ (Wing & Kuhn 2019).   Additionally, the number of nodes on trees was limited to 

make it more manageable for interpretation and sharing.  Model selection was based on the lowest 

OOB error estimate within training and test data and evaluation of accuracy, kappa statistic, and 

AUROC (area under the receiver operating characteristics). 

To explore how model predictions would change under different climate projections we 

subjected the final model to three sea level rise (SLR), five temperature, and 15 combinations of 

SLR and temperature scenarios.  Three predictions of SLR were based on projections for the Long 

Island region by 2050: low,  0.2 m; medium, 0.4 m; and high, 0.8 m (Horton et al. 2014). Sea level 

rise scenarios were subtracted from present day bathymetry to create future possible bathymetric 

layers.  Five temperature increase projections were based on a 0.03 ºC/year increase in Long Island 

Sound: 0.25 ºC (2028); 0.5 ºC (2037); 0.75 ºC (2045); 1 ºC (2053); and 2 ºC (2087; Horton et al. 

2014, Rice et al. 2014).  Temperature scenarios (0.25–2 ºC) were added to HOBO temperature 

logger data at every data point; cumulative and sequential hours over all temperature thresholds 

were re-run.  For example, 0.75 ºC was added to all temperature data points in each HOBO file to 

simulate temperatures predicted by 2045.  The model then predicted the effect of combined sea 

level rise and temperature scenarios (15 models).  
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RESULTS 

  
Figures 12–18 display values for extracted variables, including: PLW of 22.5, median 

PLW, hours over 25 ºC, RWE, hardened shorelines, and bulkheads.  Shallow depths (Figure 12) 

and areas with Z. marina (Figure 13) had more days of threshold PLW values than deeper depths.   

Western Peconic Bay had much higher temperatures than eastern Peconic Bay (Figure 14), likely 

due to reduced oceanic influence west of Shelter Island.  A possible cumulative temperature 

threshold may be ~1000 hours, found at the most western Z. marina bed (SG1, Figure 7).  

Comparison of temperature loggers (in a separate study) in two other bays on Long Island—Great 

South Bay and Shinnecock Bay—reinforced the idea that Z. marina in Peconic Bay experienced 

lower temperature stress than other eastern bays (Figure 15).  RWE was higher on the south 

shoreline of Peconic Bay and areas exposed to winds from the north (Figure 16).  Hardened 

shorelines accounted for 26% of Peconic Bay shoreline: 70% of the ideal bathymetry layer was 

within 1,000 m of a hardened shoreline and ~45% of Z. marina was within 500 m (Figure 17).  

Bulkheads comprise 77% of hardened shorelines and 20% of the Peconic Bay shoreline; 32% of 

Z. marina was within 500 m of a bulkhead (Figure 18).   

Sampled POM was higher in Z. marina than un-vegetated areas, 1.12% ± 0.44 (SD) and 

0.47% ± 0.32, respectively (Figure 19).  The maximum value for all POM samples was 1.59%, 

below the low-end literature threshold value of 5% (Koch 2001).  Percent silt and clay (fine 

sediment) was also higher in Z. marina (0.52% ± 0.44; un-vegetated 0.41% ± 1.1; Figure 19).  High 

standard deviation in un-vegetated samples results from high percent fine sediment at WQ4 (mean 

= 3.53%).  This location was at the mouth of Hashamomuck Pond (Southold, NY), subject to run-

off.  Excluding WQ4 reduced mean percent fine sediment to 0.06% ± 0.05 at un-vegetated sites.  

The highest percent fine sediment sample was 4.35% at WQ4, also below the low-end literature 

threshold value of 7.2% (Krause-Jensen et al. 2011).  

The random points file allowed for comparison of variables between present and absent Z. 

marina points (Figure 20, 21; Table 1).  In general, variables at absent points had higher standard 

deviation when compared to variables at present points (Table 3).  When comparing light variables 

between the two types of points, the mean values of PLW were much higher—typically double—

in points with Z. marina than without, a similar pattern was found for depth.  In contrast, points 

with Z. marina had lower cumulative and sequential hours over the temperature thresholds.  
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Hardened shorelines and bulkheads were further from points with Z. marina than without while 

RWE was relatively similar between point types. 

 When run through the random forest package in R with all parameters (Model 1, 24 

variables) and unlimited nodes, model OOB error was 0.57%.  Model evaluations in Table 1 

weighed the number of variables, number of nodes, OOB error rate, true positive rate, true negative 

rate, false positive rate, false negative rate, accuracy, Cohen’s Kappa, and area under the receiving 

operating curve (ROC).  Feature importance (via recursive feature elimination) was determined in 

decreasing order: RWE, bulkhead distance, bulkhead direction, hardened shoreline distance, 

hardened shoreline direction, sequential hours over 25 ºC, sequential hours over 27 ºC, cumulative 

hours over 25 ºC, depth, and hours over 30, 26, 27, 28 ºC.  Interestingly, the most important model 

features did not consider any percent light to bottom variables.  Only depth, a correlate with light 

availability, was retained.  PCA confirmed the groupings: light (PLW10–30, 25/50/75th PLW, 

depth), temperature (cumulative and sequential hours over 25–30 ºC), RWE, and hardened 

shorelines (distance/direction, bulkheads; Figure 21).  To select only one of each variable per 

grouping—cumulative temperature, sequential temperature, percent light to bottom, and hardened 

shoreline—the results of RFE determined the most important variable out of the groups: sequential 

and cumulative hours over 25 ºC, median PLW, and bulkhead direction and distance.  Model 3, 

created from RWE, depth, hours over 25 ºC (sequential and cumulative), median PLW, and 

bulkhead direction and distance, had an OOB error estimate of 0.58% (Model 3, 7 variables).  

Removal of the light variable decreased the OOB error to 0.54% (Model 5, 6 variables).  The 

decrease in error from removing light suggested that light was not a main driver of Z. marina 

habitat suitability in Peconic Bay.  Model 5 was renamed, “Habitat Suitability Model” (HS Model; 

Table 1). 

Intended for future use by restoration management, the Habitat Suitability Model was 

modified to limit the number of nodes to 50, creating a more manageable model.  Node restraint 

was also applied to Model 1 and 3.   Restraining nodes in Model 1 (24 variables) produced Model 

2 with an OOB error of 1.94%.  Model 4—or a variation on Model 2 with one variable from each 

grouping (7 variables)—reduced the OOB error to 1.87%.   Removal of the light variable from 

Model 4 further reduced the error to 1.54% (Table 1): this was called “Restoration Potential 

Model” (RP Model, Figure 22).  The RP Model predicted suitable habitats appropriate for Z. 

marina restoration.  Interestingly, the model predicted absence of Z. marina in areas between 204 
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and 254º from a bulkhead, consistent with winter winds from the NE, suggesting an interaction.  

Locations of false positives and negatives from the dataset were extracted and mapped.  False 

negatives concentrated around northern Shelter Island (Figure 23, 24) and around the deep edges 

of the Z. marina beds throughout Peconic Bay.  False positives clustered around Z. marina beds at 

the shallow and deep edges and extended beyond beds at similar depths (Figure 25, 26).  In 

addition, false positives aggregated in four distinct areas (Figure 27), which suggests the possibility 

of these areas for Z. marina restoration. 

The HS Model predicted Z. marina presence and absence from the random points file in 

23 climate change scenarios: (3) sea level rise, (5) temperature increase, and (15) combinations of 

the SLR and temperature increases.  Considering sea level rise alone, the HS model predicted: an 

increase of 2.8% Z. marina present points at low (0.2 m), an increase of 2.4% at medium (0.4 m), 

and a decrease of 5.2% at high (0.8 m) 2050 projections.  This increase in points from low to 

medium sea level rise reflected landward range expansion, especially in areas of shallow sloping 

shorelines.  However, ideal depth area decreased in every SLR scenario: the highest being a ~14% 

decrease in ideal depth area by 2100 in the high SLR scenario (Table 2).  An average temperature 

increase of 0.25 ºC decreased Z. marina present points by 95%, 0.5 ºC by 99.8%, and an increase 

to temperatures over 0.75 ºC yielded a decrease in Z. marina by 100% (0 present, 50,000 absent 

points).   However, the temperatures used in the model from the summer of 2018 likely did not 

represent the warmest year for Z. marina in this estuary.  Additionally, the HS model could not 

predict the interaction of temperature and Z. marina response.  Combinations of SLR and 

temperature also predicted a high decline in Z. marina.  An average increase of 0.25 ºC with: low 

SLR decreased Z. marina by 95.6%, medium SLR decreased by 97%, and high SLR decreased by 

98.3%.  An average increase of 0.5 ºC with low and medium SLR decreased Z. marina present 

points by 99.8% and high SLR decreased by 99.7%.  An average increase of 0.75 ºC or greater 

under any SLR scenario would result in 100% absence of Z. marina points, suggesting a possible 

temperature threshold (Table 3).  Temperature had a greater effect on Z. marina distributions than 

depth; the temperature threshold in Peconic Bay had not yet been confirmed but warming 

temperatures will certainly force Z. marina to adapt in the future. 
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DISCUSSION 
 
 

Seagrasses are declining worldwide; determining the stressors to local populations is vital 

for their successful management and restoration.  Our random forest model determined Z. marina 

habitat suitability in Peconic Bay and identified environmental factors—light, temperature, depth, 

wind exposure, and hardened shorelines—regulating its distribution.  The initial model used 24 

variables: ten light, eight temperature, four hardened shorelines, and one each for RWE and depth.  

Initial models included light because Z. marina is known to have high light requirements (~10–

30%) and light availability was thought to limit Z,marina presence in the bay (Dennison et al. 

1993, Nielsen et al. 2002, NYS Seagrass Taskforce 2009).  Recursive feature elimination ranked 

median PLW as the most important light variable: this variable reflected typical light conditions 

in the bay during the growing season (median PLW for 18 days sampled).  The final model 

achieved highest accuracy by leaving PLW light variables out.  However, depth—a large 

component in determining the percent light reaching the bottom—ranked as an important 

predicting variable to model.  Including the two other bays studied, Peconic Bay had the deepest 

Z. marina beds and clearest water, based on TSS, chlorophyll, and light measurements (Figure 28).  

If percent light reaching the bottom was the primary driver of Z. marina in Peconic Bay, there 

would be far more expansion into appropriate areas.  Percent organic matter below literary 

threshold values also suggests that at the time of sampling Z. marina beds were not light limited 

(Kenworthy et al. 2014).  A more comprehensive study of light in Peconic Bay may reveal higher 

resolution of light requirements for the Z. marina community.  And the importance of light 

requirements may increase at higher temperatures, particularly during heat waves (Zimmerman et 

al. 2015).  Many smaller-scale habitat suitability models for Z. marina included a light variable, 

but larger studies typically used depth, likely because consistent light data over large areas was 

not available (Batiuk et al. 2000, Valle et al. 2013, Detenbeck & Rego 2015, Folmer et al. 2016).  

Regardless, it appears that light alone cannot determine habitat suitability—especially in bays 

where water temperatures frequently exceed 25 ºC. 

When determining temperature thresholds for seagrasses, average and maximum 

temperatures during the growing season are typically used (Valle et al. 2013, Lefcheck et al. 2017, 

Wilson & Lotze 2019).  However, average and maximum temperatures do not consider time spent 

at stressful temperatures.  Cumulative and sequential hours exceeding certain temperature 
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thresholds better captures the time Z. marina endures temperature stress (Eakin et al. 2009, Marbà 

& Duarte 2010).  Cumulative hours represent the total time spent over a certain temperature, 

whereas sequential hours incorporate the length of time above that temperature.  Diurnal oceanic 

tidal flushing, especially in eastern Peconic Bay, may relieve Z. marina stressed by warmer 

temperatures from the outgoing tide of the western bay (Collier et al. 2017).  The most important 

temperature variable—sequential hours over 25 ºC—ranked sixth in feature importance, behind 

RWE and all hardened shoreline variables.  Cumulative temperature over 25 ºC ranked eighth and 

highest of the other cumulative temperatures analyzed.  Additionally, the higher ranked variables 

(RWE and hardened shoreline) had a full range of possible values, inclusive over time and space.  

RWE and hardened shoreline layers were modeled over the entire bay with many more points for 

interpolation and longer time periods; temperature variables used in this model may not represent 

the limits of temperature and higher (more limiting) values may increase feature importance.  

Confirming cumulative and sequential temperature thresholds of this population is imperative 

given warming temperature trends.  Based on model outputs, the thresholds likely stand around 

1000 cumulative hours over 25 ºC or an average increase in temperature above 0.75 ºC. 

Wave exposure (RWE) is frequently left out of habitat suitability models but was an 

important local factor in Peconic Bay (Koch 2001, Li et al. 2007).  Recently, RWE was used to 

predict the threshold behavior of Z. marina in Chesapeake Bay to wave energy of 675–774 J m-1, 

where Z. marina coverage shifted from continuous to patchy as a result of higher wave exposure 

within the RWE threshold range (Uhrin & Turner 2018).  As the climate warms, higher energy 

storms may become more common—and with stronger storms comes higher winds.  RWE ranked 

as the most important variable in predicting Z. marina presence in Peconic Bay.  High wind events 

from north-northeast winter storms (“Nor’easters”) expose areas on the southern shoreline of 

Peconic Bay, including areas of current Z. marina extent.  However, wave exposure tends to be 

more detrimental to shallow communities, and Z. marina in Peconic Bay is generally at deeper 

depths than in other estuaries on Long Island.  Hardened shorelines, particularly bulkheads, may 

attenuate waves back over the Z, marina and create additional longshore currents and sediment 

resuspension (Miles et al. 2001, Patrick et al. 2016).  The RP model determined an absence of Z. 

marina when bulkheads were directionally ~200–250 º (SW)—coinciding with strong winter 

northeast winds from the opposite direction.  Bulkheads likely ranked higher in feature importance 

than hardened shorelines because this structure specifically increases energy, sediment suspension, 
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and longshore current at the shoreline (Miles et al. 2001).  Living shorelines should be considered 

with current Z. marina distributions and applied where appropriate. 

The HS and RP models predicted current distributions of Z. marina in Peconic Bay from 

depth, wave exposure, hardened shorelines, and temperature.  Mapped locations of false positives 

and negatives showed that both models performed worst at edges of Z. marina beds, which may 

be due, in part, to inaccurate delineations.  Large boulders covered in sargassum sp. often 

surrounded the edges of Z. marina beds in Peconic Bay; this made it difficult to distinguish 

between the two in aerial imagery.  CCE ground-truthed the deep edge of several long-term 

monitoring sites in 2014 (Schott 2015), however, many Z. marina beds included in the current 

study were not validated.  The RP model was less accurate (by ~1%) than the HS model but 

highlighted several areas of clustered false positives.  These areas were either on the periphery of 

existing Z. marina beds or at historic edges of beds.  Further evaluation of summertime 

temperatures, tidal currents, and sediment characteristics could inform the restoration potential of 

these sites.  

Predictions of Z. marina locations with future climate change scenarios have a degree of 

uncertainty since the model did not incorporate the possible adaptations of the population to the 

stressors (Zimmerman et al. 2015, Hammer et al. 2018).  Additionally, the environmental 

constraints of current Z. marina populations may not accurately reflect future genetic changes that 

could allow for survival in lower light (sea level rise) and higher temperature (Ehlers et al. 2008).  

However, these genetic changes may occur too slowly to keep up with rapidly warming 

temperatures and lowered light availability (Duarte et al. 2018).  By 2050 the Long Island region 

will experience rising sea levels between 0.2 and 0.8 m (Horton et al. 2014).  The model predicts 

that Z. marina will expand into previously shallow areas at the low to medium SLR projections, 

assuming the seagrass will keep up with increasing water depths.  However, this cannot occur with 

a structure blocking the plant’s landward expansion.  The large increase in hardened structures 

over the past 15 years could “squeeze” the landward march of Z. marina, as seen in marshes 

elsewhere (Waycott et al. 2007, Saunders et al. 2013).  Decreasing proximity of Z. marina to 

bulkheads may also stress and eliminate that bed entirely.  The overall area of ideal depth decreased 

in every SLR scenario from 0.2–14%: however, a more detailed evaluation of landscape changes 

are needed. 
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Analysis of warming scenarios yielded complete extirpation of Z. marina in the study area 

with an increase of 0.75 ºC, not accounting for genetic or physiological responses.  Populations of 

Z. marina in two other shallower estuaries on Long Island were more resilient to higher 

temperatures experienced during the same time period.  Furthermore, in at least one Z. marina bed 

in Shinnecock Bay, the summertime strategy was similar to populations at the southern range 

limit— die-off during periods of high stress and replenish from either the seed bank over the winter 

(Jarvis et al. 2014, Lefcheck et al. 2017; personal observation). The HS model also did not account 

for groundwater discharge or an increase in CO2 availability—which could increase Z. marina 

productivity and resilience (Zimmerman et al. 1991). A model by Rozell & Wong (2010) predicted 

seaward expansion of the seawater-freshwater interface of groundwater by 23 m seaward around 

Shelter Island, NY, which could alleviate anticipated temperature stresses.  However, this model 

relied heavily on the assumption of future increased precipitation, without this increase, the 

groundwater interface will move landward with SLR.  Populations of Z. marina in creeks and 

harbors of Peconic Bay experience higher cumulative and sequential temperatures, such as in 

Bullhead Bay, Coecles Harbor, and Napeague Harbor, than areas in the bay proper (Pickerell & 

Schott 2017).  Groundwater discharge in these areas can mitigate sediment and bottom water 

temperatures  during the stressful summer months, allowing Z. marina to persist where it otherwise 

could not (Barusich et al. 2012, Pickerell & Schott 2017). Yet, groundwater has long been 

considered detrimental to seagrasses, a potential source of pesticides and nutrients (Valiela et al. 

1990, Burkholder et al. 2007, Damien & Pascaline 2013, Kenworthy et al. 2014, Detenbeck & 

Rego 2015).  The net effect of this factor may shift as the climate continues to warm. 

Anthropogenic inputs of carbon dioxide to the atmosphere have increased the DIC 

concentrations in the ocean (Zeebe & Wolf-Gladrow 2001).  Zostera marina is often carbon 

limited, deriving 50% of carbon from aqueous CO2 or, under limited aqueous CO2 conditions, 

converting the readily available HCO3- to useable carbon (Zimmerman et al. 1995, 1997, Beer & 

Rehnberg 1997).  Zimmerman et. al (2015) modeled projected CO2 concentrations and temperature 

with sampled light to demonstrate how increased carbon availability buffered temperature stress 

in Chesapeake Bay.  Increased CO2 levels in embayments may offset higher metabolic demands 

from higher temperatures and actually increase Z. marina coverage (Palacios & Zimmerman 2007, 

Zimmerman et al. 2015).  Although the models predict Z. marina die-off in Peconic Bay due 

primarily to temperature stress, the model cannot account for genetic adaptations and interaction 
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with future environmental variables.  Reduction in genetic diversity in Peconic Bay was 

hypothesized as cause for widespread declines despite this bay being cooler than surrounding bays 

(Ehlers et al. 2008, NYS Seagrass Taskforce 2009). Genetic diversity was not found to be lacking 

(Peterson et al. 2013), but Z. marina at a Shelter Island site was much less resilient to high sediment 

organic matter and low light than other sites sampled, including Great South Bay (Plaisted et al. 

2019).  High genetic diversity implies that these populations are utilizing seed dispersal for 

reproduction and are responding to stressful environmental conditions, typically plants use clonal 

reproduction in stable environments (Hughes & Stachowicz 2009, Cabaço & Santos 2012).   

Utilizing a random forest model to predict areas of Z. marina restoration potential was 

economically efficient and useful for predicting effects of climate change.  Understanding the 

limitations of local populations to controllable variables (light and hardened shorelines) and 

variables out of management control (temperature and RWE) assists restoration managers in 

determining areas for remediation, for example: increasing light availability by nutrient reduction 

or converting a bulkhead into a living shoreline.  This model also highlighted frequently 

overlooked physical factors such as hardened shorelines and RWE that should be considered when 

deciding on a restoration area.  Sea level rise and temperature are inevitable, though the degree 

and effects are uncertain.  Research into the physical drivers of Z. marina presence in Peconic Bay 

should continue to be a research priority, especially in terms of the interaction of temperature with 

groundwater discharge, increased CO2 availability, and possible increased habitat with sea level 

rise.   
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FIGURES 

 

  Figure 1: Peconic Bay, Long Island, NY.  
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Figure 2: Zostera marina extent in Peconic Bay delineated from 2017 orthoimagery. 
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Figure 3: “Ideal” bathymetry mask used to create a random point sample file of 50,000. 
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Figure 4: Water quality sampling locations in Peconic Bay for 2017 and 2018. Type 
indicates whether sampling occurred in seagrass (SG) or non-seagrass areas (WQ). 
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  Figure 5: Water depth (m) at mean low water (MLW). 
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Figure 6: Percent light through water (PLW) schematic.  Collected Kd (light attenuation) 
values are interpolated and used with bathymetry (m) to calculate percent light to bottom 
for every sampling day (18 days).  The resulting raster layers were then classified into above 
(1) or below (0) 10, 15, 18.5, 20, 22.5, 25, and 30% thresholds to determine a single layer 
(0-18 values) of analysis for each light threshold incorporating all days. 
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Figure 7: Cumulative hours of temperature over 25 ºC at each site determined from HOBO 
temperature loggers left out for the summers of 2016-2019. 

Figure 8: Schematic for creation of temperature layers.  HOBO temperature from 2018 was 
used, this was the hottest year of data collection.  Cumulative hours over temperatures of 
25-30 ºC and sequential hours over 25 and 27 ºC were computed and interpolated across 
Peconic bay. 
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Figure 9: Schematic for creation of hardened shoreline and bulkhead raster layers for 
distance (m) and direction ( º ) by Euclidian distance and direction functions. 
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Figure 10: Wave exposure model schematic.  Wind speed from Gabreski Airport in 2018, 
shoreline, and bathymetry at mean low water were used by the WEMo (Wave Exposure 
Model) to determine relative wave exposure at 435 points across Peconic Bay. 
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Figure 21: Days over PLW > 22.5% calculated from Kd and bathymetry.  Depths > 5m 
were excluded (hash) due to low light levels and no Z. marina growing deeper than 4.5m 
at MLW.  (A) All of Peconic Bay, (B) close-up. 
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Figure 13: Days over PLW > 22.5% at Z. marina beds, (A) SG1, (B) SG2, (C) SG3, (D) 
SG4, (E) SG5, calculated from Kd and bathymetry. Depths > 5m were excluded (hash) 
due to low light levels and no Z. marina growing deeper than 4.5m at MLW.  
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Figure 14: Cumulative hours over 25 ºC interpolated across Peconic Bay for 2018. 
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  Figure 15: Cumulative hours over 25 ºC at locations with Z. marina between three bays 
(PB = Peconic Bay, SB = Shinnecock Bay, GSB = Great South Bay) on Long Island, NY 
for three years of sampling (2017-2019). 
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  Figure 16: Wave exposure layer.  Wind speed from Gabreski Airport in 2018, shoreline, 
and bathymetry at mean low water were used by the WEMo (Wave Exposure Model) to 
determine relative wave exposure at 435 points across Peconic Bay. 
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  Figure 20: Boxplots between present and absent points of Z. marina for depth, percent light 
to bottom, cumulative and sequential hours over 25 ºC, and distance/direction to bulkhead.  
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  Figure 21: Boxplots between present and absent points of Z. marina for distance/direction 
to hardened shorelines, relative wave exposure, 25, 50, 75th IQR values for PLW.  
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Figure 22: Principle component analysis of (A) variables with Z. marina and (B) variables 
with and without Z. marina. Variables were scaled and centered. 
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Figure 23: “Tree” of outcom
es resulting from

 the Restoration Potential (RP) m
odel, 1 = present Z. m

arina, 0 = absent. 
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Figure 24: Locations of false negatives produced by the Restoration Potential (RP) model.  
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Figure 25: Locations of false negatives produced by the Restoration Potential (RP) model 
(close-up).  
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Figure 26: Locations of false positives produced by the Restoration Potential (RP) model. 
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  Figure 27: Locations of false positives produced by the Restoration Potential (RP) model 
(close-up).  
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  Figure 28: Locations of possible restoration areas for Z. marina produced by the 
Restoration Potential (RP) model (close-up).  
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TABLES 
 
 
  

Table 1: Mean and SD (standard deviation) of variable values from present (with Z. marina) and 
absent (without Z. marina) points used for random forest modeling in the creation of the Habitat 
Suitability (HS) and Restoration Potential (RP) models. 
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Table 3: Predicted area of ideal bathymetry (0-5m) when sea level rise scenarios (SLR) are added 
to present day bathymetry (2014).  
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 Table 4: Predicted Z. marina presence/absence based on the HS (habitat suitability) model with 

temperature, sea level rise (SLR), and combinations of both.  


